悉尼大学商学国贸双硕士毕业,现居澳洲,在澳学习生活15+年,从事教育咨询工作超过10年,澳洲政府注册教育顾问,上千成功升学转学签证案例,定期受邀亲自走访澳洲各类学校
您所在的位置: 首页> 新闻列表> 名师点评:GMAT数学难题该怎么做.
碰到GMAT数学考试的难题该如何解答呢?有没有什么好的办法可以提高GMAT数学考试难题的解题效率?下面就一起来看一下。
一 数学机经使用的意义
1.每一次换题库后机经的重复概率都在三分之一,按照正常的概率分布,将机经扫一遍,起码会遇到十道以上的原题。
2.考生之所以能在考后回忆起来这些机经,说明这些题是费了他们一定脑力的,才能回忆起来。也就是说遇到的原题应该都是有一定难度的。这样在考试时就节约了时间,在做难题时也有了思路下手
二 有争议的题以及难题例题解析
1.DS: 问能否确定一个四边形是不是平行四边形?
(1) each of sides of the 四边形 is 7
(2) each of two opposite sides of 四边形 is 3
这道题引起的争议在于1)判断四边形是平行四边形的定义是什么。2)条件2是什么意思
平行四边形的判定:①两组对边分别平行的四边形是平行四边形。②一组对边平行且相等的四边形是平行四边形。③两组对边分别相等的四边形是平行四边形。④两组对角分别相等的四边形是平行四边形。⑤对角线互相平分的四边形是平行四边形。⑥邻角互补的四边形是平行四边形
条件2:一组对边的两条边都是3(并不是两组对边的每条边都是3)
因此此题选A
2.K is one less than product of all the prime intergers,2-23,inclusive, following choices哪几个成立:K可以被2-23中的几个数整除/K可以被30整除/K可以被大于23的某质数整除
设2到23的质数乘积为S,S一定是偶数,K和S相邻,K一定是奇数。因为相邻的奇数和偶数一定是互质的,所以K的质因数中不可能含有2到23的任何一个数,所以K不能被2-23中的几个数整除
假设存在这样的一个质数,这个自然成立,假设不存在,那么K本来就是一个大于23的质数,是可以被自己整除的。
因此K可以被30整除/K可以被大于23的某质数整除是成立的。
三 总结
以上的例题说明,在面对机经中比较难或者是模糊不清的有争议的题时,要冷静地从基础定义开始分析起。大家可以从例题看出,有的题(例如2)解题方法和思路是相对比较复杂的,因此就要求大家在使用机经的时候,一定要在理解的基础上自己会做这个题,而不是记答案。这样遇到类似的难题就会有思路,也能节约时间。
以上就是GMAT数学考试中难题的常见解题方法,考生可以进行参考并进行针对性的复习,以提高GMAT数学难题的解题效率,在GMAT考试中取得更好的成绩。 相关链接:
1.谈GMAT数学如何拿满分
2.绝对实用 GMAT数学考试小技巧
3.拿到GMAT数学高分的几个小技巧
想要获得更多咨询服务点击进入 >>>>有问题?找免费的澳际专家咨询! 或联系QQ客服: ,也可以通过在线咨询处留言,把您最关心的问题告诉我们。
Amy GUO 经验: 16年 案例:4272 擅长:美国,澳洲,亚洲,欧洲
本网站(www.aoji.cn,刊载的所有内容,访问者可将本网站提供的内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律规定,不得侵犯本网站及相关权利人的合法权利。除此以外,将本网站任何内容或服务用于其他用途时,须征得本网站及相关权利人的书面许可,并支付报酬。
本网站内容原作者如不愿意在本网站刊登内容,请及时通知本站,予以删除。