关闭

澳际学费在线支付平台

GMAT数学复习之整除规律.

刚刚更新 编辑: 浏览次数:269 移动端

  在GMAT数学复习中,有很多知识点,之前澳际小编为大家总结了GMAT数学词汇之代数几何部分,下面为大家总结一下GMAT数学中“整除”的规律,希望对大家有所帮助。附:GMAT数学词汇分类整理之代数几何

【点击获取更多专业名师咨询、免费增值服务。】

  (1)1与0的特性:

  1是任何整数的约数,即对于任何整数a,总有1|a。

  0是任何非零整数的倍数,a≠0,a为整数,则a|0。

  (2)若一个整数的末位是0、2、4、6或8,则这个数能被2整除。

  (3)若一个整数的数字和能被3整除,则这个整数能被3整除。

  (4)若一个整数的末尾两位数能被4整除,则这个数能被4整除。

  (5)若一个整数的末位是0或5,则这个数能被5整除。

  (6)若一个整数能被2和3整除,则这个数能被6整除。

  (7)若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。

  (8)若一个整数的未尾三位数能被8整除,则这个数能被8整除。

  (9)若一个整数的数字和能被9整除,则这个整数能被9整除。

  (10)若一个整数的末位是0,则这个数能被10整除。

  (11)若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!

  (12)若一个整数能被3和4整除,则这个数能被12整除。

  (13)若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。

  (14)若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。如果差太大或心算不易看出是否17的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

  (15)若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除。如果差太大或心算不易看出是否19的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。

  (16)若一个整数的末三位与3倍的前面的隔出数的差能被17整除,则这个数能被17整除。

  (17)若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除。

  (18)若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23整除。

  (19)能被25整除的数的后二位数字如果是25的倍数,那么这个数就是25的倍数。

  以上就是GMAT数学复习中的“整除”部分规律,希望各位考生找到属于自己的方法,而不是单纯地去记忆。更多资讯、资料尽在澳际留学GMAT考试频道。

编辑推荐:

GMAT数学复习之余数

GMAT数学中的概率题解析

谈gmat数学复习总策略

  • 澳际QQ群:610247479
  • 澳际QQ群:445186879
  • 澳际QQ群:414525537