悉尼大学商学国贸双硕士毕业,现居澳洲,在澳学习生活15+年,从事教育咨询工作超过10年,澳洲政府注册教育顾问,上千成功升学转学签证案例,定期受邀亲自走访澳洲各类学校
您所在的位置: 首页> 新闻列表> GMAT数学独立重复性试验总结.
当在GMAT考试过程中做GMAT数学题时不免会遇到独立重复性试验的题型,很多同学都理不清楚,今天就由澳际小编总结下GMAT数学中独立重复性试验,希望对大家有所帮助。
独立重复性试验的特点是:很难搞清顺序
先写规律:
第一步:先求出特殊概率。
第二步:找到特殊情况和一般情况之间的因子。
以下的题目全部选自机经
例一、投一枚硬币2n次,求出现正面k次的概率?
第一步:特殊概率,前k次出现正面的情况(1/2)^k(1/2)^(2n-k)
第二步:特殊情况和一般情况之间的因子。C(k,2n)
所以答案为C(k,2n)*(1/2)^k(1/2)^(2n-k)
例二、有4组人,每组一男一女,每组中各取一人问取出两难两女的概率?
第一步:前两组取男,后两组取女(1/2)^4
第二步:差的因子C(2,4)
所以答案为C(2,4)*(1/2)^4
例三、一个人投飞彪,击中靶心的概率为0.7,连续投4次飞彪,问有两次击中靶心的概率?
第一步:特殊情况:前两次击中,后两次没击中:(0.7)^2(0.3)^2
第二步:差的因子:C(2,4)
所以答案为C(2,4)*(0.7)^2(0.3)^2
例四、某种硬币每抛一次正面朝上的概率为0.6问连续抛5次,至少有4次朝上的概率?
有5次朝上(0.6)^5
有四次朝上C(4,5)*0.6^4*0.4
所以答案为(0.6)^5+C(4,5)*0.6^4*0.4
了解了GMAT数学中独立重复性试验后,相信在GMAT考试中应对GMAT数学碰到类似的题型就会从容很多,希望大家在考试中能灵活运用,最后预祝大家在GMAT考试中取得佳绩。
Amy GUO 经验: 16年 案例:4272 擅长:美国,澳洲,亚洲,欧洲
本网站(www.aoji.cn,刊载的所有内容,访问者可将本网站提供的内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律规定,不得侵犯本网站及相关权利人的合法权利。除此以外,将本网站任何内容或服务用于其他用途时,须征得本网站及相关权利人的书面许可,并支付报酬。
本网站内容原作者如不愿意在本网站刊登内容,请及时通知本站,予以删除。