悉尼大学商学国贸双硕士毕业,现居澳洲,在澳学习生活15+年,从事教育咨询工作超过10年,澳洲政府注册教育顾问,上千成功升学转学签证案例,定期受邀亲自走访澳洲各类学校
您所在的位置: 首页> 新闻列表> GMAT数学疑难的解题思路.
在GMAT数学备考中,常看到不同的朋友问同样的问题,为帮助大家提高GMAT考试复习准备效率,澳际小编特收集整理了一些常见的数学疑难并给出解题思路,希望对大家有所帮助。
关于一个地方的居民承诺捐款:
要求的捐款数¥ 居民人数
100 20
58 30
35 20
10 10
问,要求一个居住区的居民捐款,上表是居民承诺的捐款上限表,问:下列哪个钱,能够保证有半数以上(含)能够捐款。
I.35 II.54 III.21,问哪几个数字符合条件。
解答:
如果设定捐款数是54,那么承诺捐款上限为100的20 个人和上限为58的30个人都会捐款,这样加起来就是50个人,居民总人数是20+30+20+10=80人,所以超过半数。
连54都可以,35、21就更可以。 所以应当全选。
DS
学生总数240,学SCIENCE的是140,学MATH的170,求LEARN MATH BUT NOT SCIENCE的人数?
1)THERE ARE 55 STUDENTS WHO LEARN SCIENCE BUT NOT MATH
2)30 DIDN‘T SELECT ANY SUBJECT
这种题有两种解题方法,
1、画图法
画两个相交的圆A、B。圆A下写学甲科的总数,圆B下写学乙科的总数;两圆相交的部分写两科都学的数量,不相交的部分写各自只学一门的数量。再在外面画一个大方框,是学生总数,圆外方框内是什么都不学的。这样就一目了然了。
2、概念法
P(A,B)=P(A)+P(B)-P(AB)
以本题为例,至少学一科的=只学甲科+只学乙科-两科都学
全集=A+B-A交B+非A非B
了解了GMAT数学中的解题思路后,在GMAT考试中应对GMAT数学碰到类似的题型就会从容很多,希望大家在考试中能灵活运用,最后预祝大家在GMAT考试中取得佳绩。
Amy GUO 经验: 16年 案例:4272 擅长:美国,澳洲,亚洲,欧洲
本网站(www.aoji.cn,刊载的所有内容,访问者可将本网站提供的内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律规定,不得侵犯本网站及相关权利人的合法权利。除此以外,将本网站任何内容或服务用于其他用途时,须征得本网站及相关权利人的书面许可,并支付报酬。
本网站内容原作者如不愿意在本网站刊登内容,请及时通知本站,予以删除。