悉尼大学商学国贸双硕士毕业,现居澳洲,在澳学习生活15+年,从事教育咨询工作超过10年,澳洲政府注册教育顾问,上千成功升学转学签证案例,定期受邀亲自走访澳洲各类学校
您所在的位置: 首页> 新闻列表> GMAT数学考生对排列组合的理解.
GMAT考试有一些部分是比较容易的,就拿GMAT数学来说吧。数学考试的内容很多是我们初高中就学习过的,而且一些GMAT考试技巧大家也是知道的。当然数学也有比较难的部分,比如排列组合题型。澳际小编带来关于排列组合的解题方法介绍:
由于GMAT数学乘法原理和加法原理是排列组合的基本原理,P和C两个公式只是这两个原理的特殊应用,所以很多题目与其去套P和C的公式,还不如直接用这两个原理来的直接简便。
一、解释一下规律
“先写规律:环形排列与直线排列相比,就相当于少了一个元素。所以可以先求直线排列,再求圆形排列。”
用乘法原理来解释一下这个规律:
比如:原贴中例二,五个人站成一个圈,有几种排列方式?
解:(5个人站位,完成这个事情要五个步骤)
第一步:第一个人站位,1种(因为圆的旋转对称性,第一个人站到哪里都是一样的)
第二步:第二个人站位,4种(由于有了第一个人的存在,就不是旋转对称了)
第三步:第三个人站位,3种
第四步:第四个人站位,2种
第五步:第五个人站位,1种
总共的方法=1X4X3X2X1=P(4,4)
从上面的过程来看,其实是结果恰好等于P(4,4),意思上是有所不同的。
二、GMAT考试各个例题解题过程
例一、在已有5个钥匙的钥匙环中放入2个钥匙,这2个钥匙相邻的概率?
解:1)先求总方法数(即5个钥匙放入2个钥匙的总排列)
第一步,放入第一把钥匙,5种
第二步,放入第二把钥匙,6种
总方法数=5X6=30
2)再求两个钥匙相邻的方法数
第一步,2个钥匙绑定,2种
第二步,2个钥匙放入5把钥匙中,5种
方法数:2X5=10
3)概率=10/30=1/3
例二、五个人站成一个圈的那道题:利用规律很容易得p(4,4)
解:这个上面解释规律的时候已经写了
例三、5个点(其中有一红点)排成一个圆圈,5个人A、B、C、D、E,其中A必须站在红点上,问有多少种不同的站法
解:第一步:A站红点,1种
第二步:第二个人站位,4种
第三步:第三个人站位,3种
第四步:第四个人站位,2种
第五步:第五个人站位,1种
总共的方法=1X4X3X2X1=P(4,4)
例四、6个盘子,一蓝5白,摆成一圈。五种坚果,其中有N和R,别的不知。如果N或R之一必须放在蓝盘子中,其他盘子各放一个坚果,共有几种摆法。
解:这里要先分类再分步,即先加法再乘法
第一类:N放蓝盘子
第一步:N放蓝盘子,1种
第二步到第六步:放其他坚果,5X4X3X2X1
总共方法数=1X5X4X3X2X1= P(5,5)
第一类:R放蓝盘子
第一步:N放蓝盘子,1种
第二步到第五步:放其他坚果,5X4X3X2X1
总共方法数=1X5X4X3X2X1= P(5,5)
总的方法数=第一类+第二类= P(5,5)+ P(5,5)=240
三、GMAT考试技巧后记
我自己做排列组合和概率问题时,都是按照这个步骤做的。即:1)弄明白完成题设事件的过程;2)分类再分步(求概率的话就先求总方法数和题目特定条件的方法数,然后相除),过程中再合理利用P和C的公式。基本上没碰到什么难题,而且感觉干干净净的。
仅仅记某个规律(比如环形排列与直线排列相比,就相当于少了一个元素。所以可以先求直线排列,再求圆形排列),又对这个规律的界定条件理解不够透彻的话,碰到变体的题目容易弄错。
以上就是小编总结的GMAT考试数学难点介绍,大家在准备GMAT数学的时候要对难题也做好准备。这点一定要认识清楚,以上关于排列组合的GMAT考试技巧希望大家都能掌握。
Amy GUO 经验: 16年 案例:4272 擅长:美国,澳洲,亚洲,欧洲
本网站(www.aoji.cn,刊载的所有内容,访问者可将本网站提供的内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律规定,不得侵犯本网站及相关权利人的合法权利。除此以外,将本网站任何内容或服务用于其他用途时,须征得本网站及相关权利人的书面许可,并支付报酬。
本网站内容原作者如不愿意在本网站刊登内容,请及时通知本站,予以删除。