悉尼大学商学国贸双硕士毕业,现居澳洲,在澳学习生活15+年,从事教育咨询工作超过10年,澳洲政府注册教育顾问,上千成功升学转学签证案例,定期受邀亲自走访澳洲各类学校
您所在的位置: 首页> 新闻列表> 巧解GMAT考试数学部分排列题.
GMAT考试各部分都有自己的经典题型,数学也不例外。我们复习GMAT数学的时候会经常遇到圆形条形排列题,一些考生利用乘法和加法原理攻克了这些题型,澳际小编这就把这些GMAT考试技巧分享给大家:
一、解释一下规律
“先写规律:环形排列与直线排列相比,就相当于少了一个元素。所以可以先求直线排列,再求圆形排列。
用GMAT数学乘法原理来解释一下这个规律:
比如:原贴中例二,五个人站成一个圈,有几种排列方式?
解:(5个人站位,完成这个事情要五个步骤)
第一步:第一个人站位,1种(因为圆的旋转对称性,第一个人站到哪里都是一样的)
第二步:第二个人站位,4种(由于有了第一个人的存在,就不是旋转对称了)
第三步:第三个人站位,3种
第四步:第四个人站位,2种
第五步:第五个人站位,1种
总共的方法=1X4X3X2X1=P(4,4)
从上面的过程来看,其实是结果恰好等于P(4,4),意思上是有所不同的。
二、各个例题GMAT考试解题过程
例一、在已有5个钥匙的钥匙环中放入2个钥匙,这2个钥匙相邻的概率?
解:1)先求总方法数(即5个钥匙放入2个钥匙的总排列)
第一步,放入第一把钥匙,5种
第二步,放入第二把钥匙,6种
总方法数=5X6=30
2)再求两个钥匙相邻的方法数
第一步,2个钥匙绑定,2种
第二步,2个钥匙放入5把钥匙中,5种
方法数:2X5=10
3)概率=10/30=1/3
例二、五个人站成一个圈的那道题:利用规律很容易得p(4,4)
解:这个上面解释GMAT考试技巧规律的时候已经写了
例三、5个点(其中有一红点)排成一个圆圈,5个人A、B、C、D、E,其中A必须站在红点上,问有多少种不同的站法
解:第一步:A站红点,1种
第二步:第二个人站位,4种
第三步:第三个人站位,3种
第四步:第四个人站位,2种
第五步:第五个人站位,1种
总共的方法=1X4X3X2X1=P(4,4)
例四、6个盘子,一蓝5白,摆成一圈。五种坚果,其中有N和R,别的不知。如果N或R之一必须放在蓝盘子中,其他盘子各放一个坚果,共有几种摆法。
解:这里要先分类再分步,即先加法再乘法
第一类:N放蓝盘子
第一步:N放蓝盘子,1种
第二步到第六步:放其他坚果,5X4X3X2X1
总共方法数=1X5X4X3X2X1= P(5,5)
第一类:R放蓝盘子
第一步:N放蓝盘子,1种
第二步到第五步:放其他坚果,5X4X3X2X1
总共方法数=1X5X4X3X2X1= P(5,5)
总的方法数=第一类+第二类= P(5,5)+ P(5,5)=240
以上就是小编整理的GMAT考试数学的经典题型,复习GMAT数学的时候考生们可以参考以上的经验。圆形条形排列题大家要掌握这样的GMAT考试技巧,最后祝大家考试顺利。
澳际六步曲服务体系由六大步骤和36项子模块组成,核心内容包括留学理性规划和背景提升、考试个性化辅导、文书创作和学校申请、套磁和面试、签证辅导及后期服务、海内外求职。澳际六步曲体系贯穿澳际所有服务项目:美国名校本科申请,名校硕士申请,博士奖学金申请,TOP 20 MBA精英申请,英国/加拿大TOP 10申请等。澳际六步曲服务体系适合人群:适合现在高一、高二、大一、大二和大三的学生,希望自己未雨绸缪,从根本上提升申请竞争力,从而于毕业之际成功步入世界名校。
Amy GUO 经验: 16年 案例:4272 擅长:美国,澳洲,亚洲,欧洲
本网站(www.aoji.cn,刊载的所有内容,访问者可将本网站提供的内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律规定,不得侵犯本网站及相关权利人的合法权利。除此以外,将本网站任何内容或服务用于其他用途时,须征得本网站及相关权利人的书面许可,并支付报酬。
本网站内容原作者如不愿意在本网站刊登内容,请及时通知本站,予以删除。