悉尼大学商学国贸双硕士毕业,现居澳洲,在澳学习生活15+年,从事教育咨询工作超过10年,澳洲政府注册教育顾问,上千成功升学转学签证案例,定期受邀亲自走访澳洲各类学校
您所在的位置: 首页> 新闻列表> 获取GMAT数学满分的五种思想.
GMAT数学在GMAT考试中,往往是能拿高分的科目,并且拿到GMAT数学满分并不是很难,每年都会有很多同学拿到满分,那么怎么做才能拿到GMAT数学满分呢,下面就随澳际小编一起来看,获得GMAT数学高分的五个方法。
一、数形结合。数形结合的思想,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合,通过对图形的认识,数形结合的转化,可以培养思维的灵活性,形象性,使问题化难为易,化抽象为具体. 通过“形”往往可以解决用“数”很难解决的问题.
二、换元。换元法又称变量替换法,即根据所要求解的式子的结构特征,巧妙地设置新的变量来替代原来表达式中的某些式子或变量,对新的变量求出结 果后,返回去再求出原变量的结果.换元法通过引入新的变量,将分散的条件联系起来,使超越式化为有理式、高次式化为低次式、隐性关系式化为显性关系式,从 而达到化繁为简、变未知为已知的目的.
三、转化与化归。所谓转化与化归思想方法,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换使之转化,进而达到解决的一种方法.一般总是将复杂的问题通过转化为简单的问题,将难解的问题通过变换转化为容易的问题,将未解决的问题变换转化为已解决的问题.
在GMAT考试中,转化与化归的思想方法是数学中最基本的思想方法.GMAT数学中一切问题的解决都离不开转化与化归,数形结合思想体现了数与形的相互转化;函数与方程思 想体现了函数、方程、不等式间的相互转化;分类讨论思想体现了局部与整体的相互转化,以上三种思想方法都是转化与化归思想的具体体现.各种变换法、分析 法、反证法、待定系数法、构造法等都是转化的手段.所以说转化与化归是数学思想方法的灵魂.
四、函数与方程。函数思想指运用函数的概念和性质,通过类比、联想、转化、合理地构造函数,然后去分析、研究问题,转化问题和解决问题.方程思 想是通过对问题的观察、分析、判断等一系列的思维过程中,具备标新立异、独树一帜的深刻性、独创性思维,将问题化归为方程的问题,利用方程的性质、定理, 实现问题与方程的互相转化接轨,达到解决问题的目的.
五、分类讨论。所谓分类讨论,就是当问题所给的对象不能进行统一研究时,我们就需要对研究的对象进行分类,然后对每一类分别研究,得出每一类的 结论,最后综合各类的结果得到整个问题的解答.实质上分类讨论是“化整为零,各个击破,再积零为整”的策略. 分类讨论时应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论.”
以上是澳际小编总结的GMAT数学获得高分的五个方法,同学们看完之后把以上方法合理运用到GMAT考试备考中,总结出更适合自己的方法,以便在考试时获得GMAT数学满分。
澳际六步曲第二步为您进行考试指导,澳际培训核心思维颠覆国内传统大班无差异化批发模式,采取一对一个性化教学,辅之小班精英辅导应试方法和学生英语能力结合,考试辅导和留学规划一体化行动,学生国际化英语思维构建及西方人文知识和视野的开拓并重。
我们具体的服务项目如下:
1. 免费测评模考,分析申请人的问题,制作考试测评报告和备考指导
2. 结合申请人的申请目标和考试基础,制定考试整体规划及时间安排
3. 提供对申请人有帮助的考试经验和机经等
4. 根据需要提供免费口语模拟和指导服务
5. 免费修改作文4篇
6. 考前心理指导,调整考前心理状态
Amy GUO 经验: 17年 案例:4539 擅长:美国,澳洲,亚洲,欧洲
本网站(www.aoji.cn,刊载的所有内容,访问者可将本网站提供的内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律规定,不得侵犯本网站及相关权利人的合法权利。除此以外,将本网站任何内容或服务用于其他用途时,须征得本网站及相关权利人的书面许可,并支付报酬。
本网站内容原作者如不愿意在本网站刊登内容,请及时通知本站,予以删除。