悉尼大学商学国贸双硕士毕业,现居澳洲,在澳学习生活15+年,从事教育咨询工作超过10年,澳洲政府注册教育顾问,上千成功升学转学签证案例,定期受邀亲自走访澳洲各类学校
您所在的位置: 首页> 新闻列表> 如何在GAMT考试中使用通项问题的简便方法.
在GMAT考试中,除了GMAT数学词汇,通项问题是GMAT数学中经常会出现的,并且方法多种多样,其实通项问题还有更好的简便方法,下面澳际小编就将GMAT考试中的通项问题简便发放分享给各位考生。
GMAT考试简便方法一:
我们看到最多的帖子就是GMAT数学词汇和一堆问通项如何求的帖子,今天再这里说一个一招搞定的做法:
通项S,形式设为S=Am+B,一个乘法因式加一个常量
系数A必为两小通项因式系数的最小公倍数
常量B应该是两个小通项相等时的最小数,也就是最小值的S
例题:4-JJ78(三月84).ds某数除7余3,除4余2,求值。
解:设通项S=Am+B。由题目可知,必同时满足S=7a+3=4b+2
A同时可被7和4整除,为28(若是S=6a+3=4b+2,则A=12)
B为7a+3=4b+2的最小值,为10(a=1.b=2时,S有最小值10)
所以S=28m+10
GMAT考试简便方法二:
129 DS
x 除8余几?
(1)x除12余5
(2)x除18余11
: E
:条件1,令x=12m+5, m=8k,8k+1,…8k+7
hang13:由1,X=5时候除8余5,X=17时候除8余1,不确定
由2,X=11时候除8余3,X=29时候除8余5,不确定
1,2联立
x=12m+5=18n+11
12m=18n+6
2m=3n+1,n只能取奇数1,3,5..
所以x=18n+11=18*(2k+1)+11=36k+29,k=0,1,2,3,
除8无法确定
这个题如果用我以前的解法貌似就不行了,我想了一下可能是因为
12 18有公因数的原因。
再看本帖的题,如果用上面的做法
66 问有个数除15余几
(1)这个数除5余4
(2)这个数除6余5
X=5m+4=6n+5
5m=6n+1, n只能取4,9,14..
n=5k+4,k=0,1,2,3,
x=6n+5=6(5k+4)+5=30k+29
这是总结出来的方法,大家慎用
GMAT考试简便方法三:
:我觉得最好的办法是在原来的两个式子两边同时加减一个相同的数字凑成可以提取质因子的形式,然后再根据质因子互素的性质推出应该满足的条件,再带回原来的任何一个表达式既可, 这是我这几天才悟出来的.
129
DS
x 除8余几?
(1)x除12余5
(2)x除18余11
(1) --> x = 12n + 5
(2) --> x = 18m + 11
12n + 5 = 18m + 11, add 7 to both side of equation
12n + 5 + 7 = 18m + 11 + 7
6*2*(n+1) = 6*3(m+1) --> 2(n+1) = 3(m+1), because 2 and 3 are both prime, so n+1=3k, n = 3k-1
Subsitute n into: x = 12n + 5 = 12(3k - 1) + 5 = 36k - 7
应该是屡试不爽的.
:用这个方法做下面的题
66 问有个数除15余几
(1)这个数除5余4
(2)这个数除6余5
x=5n+4=6m+5
两边都加1
5n+5=6m+6
5(n+1)=6(m+1)
所以n+1=6a, m+1=5b
n=6a-1,m=5b-1
代入x=5n+4, x=5(6a-1)+4=30a-1
以上是澳际小编为大家总结的GMAT考试中通项问题更简便的三种方法,考生们在备考GMAT数学时碰到这类问题,可以尝试自行解决,同时小编提醒,在学习通项问题时不要忽略GMAT数学词汇,最后预祝大家顺利通过考试!
澳际培训在国内首家推出专职“学习规划师”和“留学规划师”制度,对学生全程规划、全程跟踪,全程反馈。我们汇聚了国内外顶级名师,平均教学经验在5年以上,并实行八对一尊享服务——课程规划师,留学规划师,阅读教师,写作教师,听力教师,口语教师,语法教师,词汇教师等八位一体。完善的留学服务保证,整合了十年留学服务经验,让我们能将一流培训和申请服务全程有机结合。澳际50%学子都获得TOEFL 100和SAT 2000以上的分数。
澳际六步曲第二步考试指导具体服务项目如下:
1. 免费测评模考,分析申请人的问题,制作考试测评报告和备考指导
2. 结合申请人的申请目标和考试基础,制定考试整体规划及时间安排
3. 提供对申请人有帮助的考试经验和机经等
4. 根据需要提供免费口语模拟和指导服务
5. 免费修改作文4篇
6. 考前心理指导,调整考前心理状态
Amy GUO 经验: 17年 案例:4539 擅长:美国,澳洲,亚洲,欧洲
本网站(www.aoji.cn,刊载的所有内容,访问者可将本网站提供的内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律规定,不得侵犯本网站及相关权利人的合法权利。除此以外,将本网站任何内容或服务用于其他用途时,须征得本网站及相关权利人的书面许可,并支付报酬。
本网站内容原作者如不愿意在本网站刊登内容,请及时通知本站,予以删除。