关闭

澳际学费在线支付平台

预先知道GMAT数学五大解题思想.

刚刚更新 编辑: 浏览次数:208 移动端

  在大家准备GMAT考试数学部分的时候,有的GMAT数学题确实有难度,大家深感茫然,这个是时候的GMAT数学考试就得需要一些解题思想,这些最基本的解题思想往往会被大家所忽视,但是有专家指出:半数以上的题目都能用到的,希望大家能够牢记这些方法。下面,澳际小编将带你揭秘最常用的五大解题思想。

  以下是GMAT考试中通过对大量GMAT数学题问题的总结得出来的五大解题思想:

  1.换元思想

  换元法又称变量替换法,即根据所要求解的式子的结构特征,巧妙地设置新的变量来替代原来表达式中的某些式子或变量,对新的变量求出结果后,返回去再求出原变量的结果.换元法通过引入新的变量,将分散的条件联系起来,使超越式化为有理式、高次式化为低次式、隐性关系式化为显性关系式,从而达到化繁为简、变未知为已知的目的.

  2.数形结合思想

  数形结合的思想,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合,通过对图形的认识,数形结合的转化,可以培养思维的灵活性,形象性,使问题化难为易,化抽象为具体. 通过“形”往往可以解决用“数”很难解决的问题.

  3.转化与化归思想

  所谓转化与化归思想方法,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换使之转化,进而达到解决的一种方法.一般总是将复杂的问题通过转化为简单的问题,将难解的问题通过变换转化为容易的问题,将未解决的问题变换转化为已解决的问题.

  转化与化归的思想方法是GMAT数学中最基本的思想方法.数学中一切问题的解决都离不开转化与化归,数形结合思想体现了数与形的相互转化;函数与方程思想体现了函数、方程、不等式间的相互转化;分类讨论思想体现了局部与整体的相互转化,以上三种思想方法都是转化与化归思想的具体体现.各种变换法、分析法、反证法、待定系数法、构造法等都是转化的手段.所以说转化与化归是数学思想方法的灵魂.

  4.函数与方程思想

  函数思想指运用函数的概念和性质,通过类比、联想、转化、合理地构造函数,然后去分析、研究问题,转化问题和解决问题.方程思想是通过对问题的观察、分析、判断等一系列的思维过程中,具备标新立异、独树一帜的深刻性、独创性思维,将问题化归为方程的问题,利用方程的性质、定理,实现问题与方程的互相转化接轨,达到解决问题的目的.

  5.分类讨论思想

  所谓分类讨论,就是当问题所给的对象不能进行统一研究时,我们就需要对研究的对象进行分类,然后对每一类分别研究,得出每一类的结论,最后综合各类的结果得到整个问题的解答.实质上分类讨论是“化整为零,各个击破,再积零为整”的策略. 分类讨论时应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论.”

  好了,大家对这五大解题思想陌生吗?以上就是澳际小编给大家带来的预先知道GMAT考试数学五大解题思想的相关介绍,至此,GMAT数学五大思想全部介绍完毕,希望考试在做大量GMAT数学题的同时,注意运用这些方法。另外,想要获取更多各种思想的举例和详细解法, 敬请关注澳际留学教育网站每日更新。

  澳际教育创立伊始就只专注于欧美高端留学,在本领域内资历最深,每年限量服务以确保质量;澳际留学多年累计服务客户数千,连续8年99%的申请成功率,90%以上的申请人获得了美国前100和加拿大、英国前10的名校录取,大量奖学金申请成功案例。我们坚持公司的收益和客户的利益紧密挂钩,双方紧密的连接在一起;公司会动用全部资源帮助客户去最好的学校,拿到最多的奖学金。我们将承诺用最优质服务帮您申请最满意的学校,申请不成功我们为您全额退款!澳际留学全心全意为您!

  • 澳际QQ群:610247479
  • 澳际QQ群:445186879
  • 澳际QQ群:414525537