悉尼大学商学国贸双硕士毕业,现居澳洲,在澳学习生活15+年,从事教育咨询工作超过10年,澳洲政府注册教育顾问,上千成功升学转学签证案例,定期受邀亲自走访澳洲各类学校
您所在的位置: 首页> 新闻列表> GRE数学专项考试辅导书推荐.
澳际小编为大家整理了GRE数学专项辅导书推荐,对于GRE数学专项的备考有着非常大的帮助,希望正在准备GRE考试的考生能够参考,更好地备考GRE考试。
本文是根据GRE数学专项的考点为主线,分别为大家介绍书籍的,详细如下:
一、高中知识
各种三角诱导公式,和,差,倍,半公式与和差化积,积化和差公式,平面解析几何。
说明:Cracking the GRE Math Test里面第一章就是复习高中知识,内容基本差不多了,不用另外找书复习。
二、数学分析
极限,连续的概念,单变量微积分(求导法则,积分法则,微商),多边量微积分及其应用,曲线及曲面积分,场论初步。
参考书:张筑生先生的3册《数学分析新讲》,Walter Rudin的Principles of Mathematical Analysis
说明:Cracking the GRE Math Test用了两章来复习数学分析,基本够了。
三、微分方程
基本概念,各种方程的基本解法。
参考书:Wolfgang Walter, Ordinary Differential Equations
说明:以Cracking the GRE Math Test中的相关章节为主,一般不难。
四、线性代数
普通代数,艾森斯坦因法则,行列式,向量空间,多变量方程组解法,特征多项式及特征向量,线形变换及正交变换,度量空间。
参考书:镇系之宝,张贤科老师的《高等代数学》,Seymour Lipschutz的Theory and Problems of Linear Algebra
说明:Cracking the GRE Math Test这本书里面的东西也差不多够了。
五、初等数论
欧几里得算法,同余式的相关公式,欧拉-费马定理。
参考书:冯老师的《整数与多项式》
说明:以Cracking the GRE Math Test相关章节为主。
六、抽象代数
群论及环域的基本概念及运算法则。
参考书:冯老师的《近世代数引论》
说明:抽象代数的内容最近几年越来越多,大家要认真准备这一部分的内容。
七、离散数学
命题逻辑,图论初步(基本概念,表示法,邻接and关联距阵,基本运算定理如V+F-E=2),集合论(注意了解一下偏序的概念)。
参考书:J. A. Bondy and U.S.R. Murty,raph theory with applications
说明:逻辑的题目比较简单,也就是命题逻辑的基本运算,最多再加上真值表,随便找一本离散数学的书看看基本概念就行了。集合论的题目也比较简单。不过由于系里面没有开图论的课,所以大家还是好好看书,Bondy这本书看看第一章就行了。
八、数值分析
高斯迭代法,插值法等基本运算法则。
参考书:李庆扬等的《数值计算原理》
说明:内容很少。
九、实变函数
可数性概念,可测,可积的概念,度量空间,内积等概念。
说明:以Cracking the GRE Math Test相关章节为主。
十、拓扑学
邻域系,可数性公理,紧集的概念,基本拓扑性质。
参考书:J. R. Munkres, Topology
说明:重点,近几年的分量越来越大。以Cracking the GRE Math Test相关章节为主,不过据说考过foundamental group,大家还是好好看看书。
十一、复变函数
基本概念,解析性(共厄调和的概念),柯西积分定理,Taylor&Laurent展式(重点),保角变换(非重点),留数定理(重点)
参考书:方企勤先生的《复变函数教程》,Lars V. Ahlfors的Complex Analysis
说明:学过复变就行了,一定要记住基本公式。
十二、概率论与统计
古典概型,单变量概率分布模型,二项式分布的正态近似
参考书:李贤平的《概率论基础》
说明:以Cracking the GRE Math Test中相关章节为主,一般来说很简单。
以上便是GRE数学专项考试辅导书推荐,希望考生在看完之后能根据自己的情况总结一套适合自己的备考计划,从而为你的GRE增分。
Amy GUO 经验: 16年 案例:4272 擅长:美国,澳洲,亚洲,欧洲
本网站(www.aoji.cn,刊载的所有内容,访问者可将本网站提供的内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律规定,不得侵犯本网站及相关权利人的合法权利。除此以外,将本网站任何内容或服务用于其他用途时,须征得本网站及相关权利人的书面许可,并支付报酬。
本网站内容原作者如不愿意在本网站刊登内容,请及时通知本站,予以删除。