悉尼大学商学国贸双硕士毕业,现居澳洲,在澳学习生活15+年,从事教育咨询工作超过10年,澳洲政府注册教育顾问,上千成功升学转学签证案例,定期受邀亲自走访澳洲各类学校
您所在的位置: 首页> 新闻列表> GRE数学常考题型:排列组合.
下面澳际小编为您介绍下GRE数学常考题型:排列组合。希望对备考GRE的学员有所帮助哦。
1.排列(permutation):
从N个东东(有区别)中不重复(即取完后不再取)取出M个并作排列,共有几种方法:P(M,N)=N!/(N-M)!
例如:从1-5中取出3个数不重复,问能组成几个三位数?
解答:P(3,5)=5!/(5-3)!=5!/2!=5*4*3*2*1/(2*1)=5*4*3=60
也可以这样想从五个数中取出三个放三个固定位置
那么第一个位置可以放五个数中任一一个,所以有5种可能选法,那么第二个位置余下四个数中任一个,....4.....,那么第三个位置……3……
所以总共的排列为5*4*3=60。
如果可以重复选(即取完后可再取),总共的排列是5*5*5=125
2.组合(combination):
从N个东东(可以无区别)中不重复(即取完后不再取)取出M个(不作排列,即不管取得次序先后),共有几种方法:
C(M,N)=P(M,N)/P(M,M)=N!/(M-N)!/M!
C(3,5)=P(3,5)/P(3,3)=5!/2!/3!=5*4*3/(1*2*3)=10
可以这样理解:组合与排列的区别就在于取出的M个作不作排列-即M的全排列P(M,M)=M!,
那末他们之间关系就有先做组合再作M的全排列就得到了排列
所以C(M,N)*P(M,M)=P(M,N),由此可得组合公式
性质:C(M,N)=C( (N-M), N )
即C(3,5)=C( (5-2), 5 )=C(2,5) = 5!/3!/2!=10
以上就是澳际小编为你分析的GRE数学常考题型排列组合。备考GRE学员对于GRE数学题型一定要巩固练习,加强分析能力。
Amy GUO 经验: 16年 案例:4272 擅长:美国,澳洲,亚洲,欧洲
本网站(www.aoji.cn,刊载的所有内容,访问者可将本网站提供的内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律规定,不得侵犯本网站及相关权利人的合法权利。除此以外,将本网站任何内容或服务用于其他用途时,须征得本网站及相关权利人的书面许可,并支付报酬。
本网站内容原作者如不愿意在本网站刊登内容,请及时通知本站,予以删除。