排列组合是GRE数学考试的一个考点,GRE数学题型有很多,那么常考的排列组合题型有哪些?下面澳际教育小编就给大家总结一下新GRE数学常考的排列组合题型。
澳际教育GRE考试频道为各位考生整理了新GRE数学考试排列组合常考题型,供考生们参考使用,希望能够帮到各位童鞋。
1.排列(permutation):
从N个东东(有区别)中不重复(即取完后不再取)取出M个并作排列,共有几种方法:P(M,N)=N!/(N-M)!
例如:从1-5中取出3个数不重复,问能组成几个三位数?
解答:P(3,5)=5!/(5-3)!=5!/2!=5*4*3*2*1/(2*1)=5*4*3=60
也可以这样想从五个数中取出三个放三个固定位置
那么第一个位置可以放五个数中任一一个,所以有5种可能选法,那么第二个位置余下四个数中任一个,....4.....,那么第三个位置……3……
所以总共的排列为5*4*3=60。
如果可以重复选(即取完后可再取),总共的排列是5*5*5=125
2.组合(combination):
从N个东东(可以无区别)中不重复(即取完后不再取)取出M个(不作排列,即不管取得次序先后),共有几种方法:
C(M,N)=P(M,N)/P(M,M)=N!/(M-N)!/M!
C(3,5)=P(3,5)/P(3,3)=5!/2!/3!=5*4*3/(1*2*3)=10
可以这样理解:组合与排列的区别就在于取出的M个作不作排列-即M的全排列P(M,M)=M!,
那末他们之间关系就有先做组合再作M的全排列就得到了排列
所以C(M,N)*P(M,M)=P(M,N),由此可得组合公式
性质:C(M,N)=C( (N-M), N )
即C(3,5)=C( (5-2), 5 )=C(2,5) = 5!/3!/2!=10
以上就是澳际教育小编给大家总结的新GRE数学考试排列组合常考题型,参加GRE考试的同学,可以通过本文掌握这些题型,希望能够对大家的新GRE数学考试有所帮助。
澳际六步曲第二步为您进行考试指导,澳际培训核心思维颠覆国内传统大班无差异化批发模式,采取一对一个性化教学,辅之小班精英辅导应试方法和学生英语能力结合,考试辅导和
留学规划一体化行动,学生国际化英语思维构建及西方人文知识和视野的开拓并重。
我们具体的服务项目如下:
1. 免费测评模考,分析申请人的问题,制作考试测评报告和备考指导
2. 结合申请人的申请目标和考试基础,制定考试整体规划及时间安排
3. 提供对申请人有帮助的考试经验和机经等
4. 根据需要提供免费口语模拟和指导服务
5. 免费修改作文4篇
6. 考前心理指导,调整考前心理状态
(注:口语模拟和作文修改服务提供时间为每年2月28日-8月1日)