悉尼大学商学国贸双硕士毕业,现居澳洲,在澳学习生活15+年,从事教育咨询工作超过10年,澳洲政府注册教育顾问,上千成功升学转学签证案例,定期受邀亲自走访澳洲各类学校
您所在的位置: 首页> 新闻列表> 怎样巧解GRE考试数学难题.
新GRE考试数学难不难?其实数学考察的大部分都是很基础的知识,需要考生们掌握不错的GRE词汇量。当然也是有难题存在的,我们做GRE模拟题的时候就会发现一些难题。澳际小编分享的是难题的解决办法:
新GRE考试数学难题的巧法一:最小值代入检验法
这是数学部分最重要的解题技巧!顾名思义,这种方法通过代入某一个值求解,将复杂的问题转化成简单易懂的代数式。我们前面说过,新GRE考试所测试的数学知识不超过初中水平,但ETS却轻而易举地就能把这些题变难,惯用的手段不是屡设陷阱,就是用晦涩复杂的语言来表达一个事实上很清楚简单的数学计算。最小值代入检验法是ETS这些伎俩的克星,它通过一个虽未获证明却着实可用的土办法排除绝对错误的选项,从而顺利地找到正确答案。
怎样运用这种方法:
1、GRE词汇量看看问题是否很复杂以至于用通常的代数法无济于事(这只需要花几秒钟的时间)。
2、代入选项中处于中间值的选项,比如5个选项的值分别为1,2,3,4,5,你可以先代入值3试试,然后判断应该是大于3的数还是小于3的数,接着继续代入。
3、如果选项不能为你提供有效的解题线索,你可以从题干入手,寻找一个符合题干变量的最小的值如1或者2。
4、排除肯定错误的选项,直到正确选项出项在你面前。
例1:
When the positive integer Z is divided by 24,there mainder is 10.
What is there mainder when Z is divided by 8?
a)1
b)2
c)3
d)4
e)5
解答:
如果要用纯代数方程式来解题的话,GRE模拟题那你就会浪费考试的宝贵时间而且最后一无所获。解这一题的最好办法是用最小值代入检验。找出一个数Z,使Z/24有一个余数10。我们可以假设Z=34(34=24+10)。而当34被8除时,商为4,余数为2。如果这时你还不满意的话。试试58这个数(58=24×2+10)。之后,你就能确信(B)是正确答案。
策略:这种最小值代入检验法对你检查确认已选答案也甚为有效。当然,用原来的方法再算一遍也能达到检查的目的。但是,如果你采用这种方法确认的话,你就相当于让另外一个和你智慧相当的人和你一同做题,可想而知,这能大大提高你的准确率(100%把握)。要知道,在GRE考试的数学部分每道题你有2分钟的时间,不要担心考试时间不够。
例2
If n is an eveninteger,which of the following must be an oddinteger?
a)3n-2
b)3(n+1)
c)n-2
d)n/3
e)n/2
解答:
答案是(B)。当你不能确定未知数有几个值时,尽管使用最小值代入检验法。在这里,你可以设n等于2。而当n=2时,3(n+1)=9。问题迎刃而解。如果你没有把握的话可以再试几个数。
GRE考试数学难题巧法二:界定范围法
这种办法能大大地减少你的计算量,节约时间的同时也能起到检查答案的作用。这里,你通过确定答案的范围从而迅速地找到答案。
看下面这个例子:
If0.303z=2,727,thenz=
a)9,000
b)900
c)90
d)9
e)0.9
解答:
答案是(A)。这5个选项的数值相差很大,你可以考虑使用界定范围法。0.303约等于1/3。1/3z=2,727,则z的值应该是在9,000左右。很明显,只有选项A可能是正确答案,果断地选择A。
策略:界定范围法也是一种很有用的检查工具。当你用一种甚至很奇妙的方法得出答案时,别得意忘形,一定再检查一遍,而界定范围法是你可选择的为数不多的好办法之一。
上述就是小编总结的新GRE考试中的数学问题,数学要想取得不错的考试成绩,就需要大家掌握GRE词汇量等基础知识。考生们做GRE模拟题的时候要多关注一下,祝大家取得不错的考试成绩。
澳际六步曲体系 TSSS源于经验、责任、使命、灵感和天才,充分凝聚每一个澳际人的智慧以及数千个名校成功录取案例的经验。澳际引进世界顶级咨询公司先进咨询服务模型和西方职业评估体系基础上,结合申请人在海外求学路上的切实困惑和需求,开创出来的全新留学服务体系。“澳际六步曲”的宗旨是打破传统留学中介代理的服务模式,关注就业,重视科学职业规划,强调授人以“渔”。协助申请人创建自己从未意识到的申请名校的竞争优势(Create your own edge)。澳际旨在成为中国留学行业的改革者和新规则的制定者。我们要破除已有的习惯性思维,推行同样的变革和创新。
Amy GUO 经验: 16年 案例:4272 擅长:美国,澳洲,亚洲,欧洲
本网站(www.aoji.cn,刊载的所有内容,访问者可将本网站提供的内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律规定,不得侵犯本网站及相关权利人的合法权利。除此以外,将本网站任何内容或服务用于其他用途时,须征得本网站及相关权利人的书面许可,并支付报酬。
本网站内容原作者如不愿意在本网站刊登内容,请及时通知本站,予以删除。