悉尼大学商学国贸双硕士毕业,现居澳洲,在澳学习生活15+年,从事教育咨询工作超过10年,澳洲政府注册教育顾问,上千成功升学转学签证案例,定期受邀亲自走访澳洲各类学校
您所在的位置: 首页> 新闻列表> GRE考试 正态分布题概念及解法介绍.
GRE考试中,新GRE数学的正态分布题是大家最头疼的,面对GRE数学题,我们应该如何解决,今天澳际小编介绍了GRE数学题中正态分布的概念和相关解法,希望能够帮助大家。
正态分布题
1. 先给出基本概念:
1.1正态分布,又称高斯分布,指变量的频数或频率呈中间最多,两端逐渐对称地减少,表现为钟形的一种概率分布。它是概率统计中最重要的一种分布,也是自然界最常见的一种分布。一般说来,若影响某一数量指标的随机因素很多,而每个因素所起的作用都不太大,则这个指标服从正态分布。
1.2若随机变量X服从一个数学期望为μ(本题中等于均值a)、标准方差为 的高斯分布,记为:X∽ N(a, 2),则其概率密度函数为:
正态分布的均值a决定了其位置,其标准差σ决定了分布的幅度。曲线关于x=a的虚线对称, 决定了曲线的“胖瘦”,因其曲线呈钟形,因此人们又经常称之为钟形曲线,如图所示:
1.3高斯型随机变量的概率分布函数,是将其密度函数取积分,即其中,
表示随机变量A的取值小于等于x的概率。如A的取值小于等于均值a的概率是50%。
1.4通常所说的标准正态分布是μ = 0,σ = 1的正态分布,即令图1中的曲线a=0, , 就得到了标准正态分布,曲线如图。
对于一般的正态分布,可以通过变换,归一化到标准的正态分布,算法为:
设原正态分布的期望为a,标准方差为 ,欲求分布在区间(y1, y2)的概率,可以变换为求图3中分布在(x1, x2)间的概率。其中x与y的对应关系如下:
例如,若一正态分布a=9, , 区间为(5, 11),则区间归一化后得到(-2,1),即通过这种归一化方法就可以用标准正态分布的方法判断结果。
2. 本次考试中正态分布题的解法:
有一射击队,人数600人,对其射击结果打分,结果服从正态分布,得到算数平均分为84分,标准方差为5,假定分数大于90分的概率为k%; 另一射击队,人数400人,对其射击结果打分,结果服从正态分布,得到算数平均分为80分,标准方差为3,假定分数大于86分的概率为n%; 问k和n谁大?
解:第一组X∽ N(84,25);第二组Y∽ N(80,9)。
现在,比较k和 n,即比较k% = P(A>90)和 n% = P(B> 86)的大小。
归一化以后,
P(A>90)=P标准(A>(90-84)/5)= P标准(A>6/5);
P(B>86)=P标准(A>(86-80)/3)= P标准(A>6/3);
上述概率大小为 图4中阴影部分的面积,所以最后k 大于 n.
以上是澳际小编总结的GRE考试之正态分布题概念及解法介绍,希望能够帮助大家。专家认为改革后的新GRE数学对我们国内考生不会影响太大,因为改革后的GRE数学题考查的数学知识范围,运算复杂程度并没有变化。
澳际六步曲第二步为您进行考试指导,澳际培训核心思维颠覆国内传统大班无差异化批发模式,采取一对一个性化教学,辅之小班精英辅导应试方法和学生英语能力结合,考试辅导和留学规划一体化行动,学生国际化英语思维构建及西方人文知识和视野的开拓并重。
我们具体的服务项目如下:
1. 免费测评模考,分析申请人的问题,制作考试测评报告和备考指导
2. 结合申请人的申请目标和考试基础,制定考试整体规划及时间安排
3. 提供对申请人有帮助的考试经验和机经等
4. 根据需要提供免费口语模拟和指导服务
5. 免费修改作文4篇
6. 考前心理指导,调整考前心理状态
Amy GUO 经验: 16年 案例:4272 擅长:美国,澳洲,亚洲,欧洲
本网站(www.aoji.cn,刊载的所有内容,访问者可将本网站提供的内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律规定,不得侵犯本网站及相关权利人的合法权利。除此以外,将本网站任何内容或服务用于其他用途时,须征得本网站及相关权利人的书面许可,并支付报酬。
本网站内容原作者如不愿意在本网站刊登内容,请及时通知本站,予以删除。