悉尼大学商学国贸双硕士毕业,现居澳洲,在澳学习生活15+年,从事教育咨询工作超过10年,澳洲政府注册教育顾问,上千成功升学转学签证案例,定期受邀亲自走访澳洲各类学校
您所在的位置: 首页> 新闻列表> gre数学的sub考试该如何应对.
正在准备gre数学考试的考生,每个人都会遇到不一样的问题,而有的考生对于gre数学专项考试则表现出十分的紧张,不知道自己改如何应对gre数学sub考试,sub考试到底都是考一些什么呢,下面澳际留学小编就为大家介绍一下gre数学sub考试该如何应对。
关于gre数学考试,其中gre数学专项考试的考试范围比较大,可能会涉及到不同年级的知识,这时我们就应该从容应对,在复习时逐一突破,下面说一下gre数学sub考试的内容:
考试内容
下面列一下gre数学sub考试的大致范围。
按照ETS的说法,gre数学sub考试中50%是微积分方面的题目,25%是线性代数的题目,剩下的25%是其他基本数学内容。gre数学Sub考试总的原则是记住基本定义、定理和结论,不要管证明,更不要去记太复杂的内容。
高中知识
各种三角诱导公式,和,差,倍,半公式与和差化积,积化和差公式,平面解析几何。
说明:Cracking the GRE Math Test里面第一章就是复习高中知识,我看内容基本差不多了,大家也就不用另外找书复习了。
数学分析
极限,连续的概念,单变量微积分(求导法则,积分法则,微商),多边量微积分及其应用,曲线及曲面积分,场论初步。
参考书:张筑生先生的3册《数学分析新讲》,Walter Rudin的Principles of Mathematical Analysis
说明:Cracking the GRE Math Test用了两章来复习数学分析,基本够了。我只是另外看了一些场论的公式以及Fourier分析的一点内容。不过sub中有一些数学分析方面的题目很灵活,要你判断一个命题是否正确,对于错误选项如果想不出反例来就有些麻烦了,大家要注意。
微分方程
基本概念,各种方程的基本解法。参考书:Wolfgang Walter, Ordinary Differential Equations
说明:以Cracking the GRE Math Test中的相关章节为主,一般不难。
线性代数
普通代数,艾森斯坦因法则,行列式,向量空间,多变量方程组解法,特征多项式及特征向量,线形变换及正交变换,度量空间。
参考书:镇系之宝,张贤科老师的《高等代数学》,Seymour Lipschutz的Theory and Problems of Linear Algebra
说明:Cracking the GRE Math Test这本书里面的东西也差不多够了,不过鉴于sub越来越难,大家还是回去翻翻张老师的书吧。
初等数论
欧几里得算法,同余式的相关公式,欧拉-费马定理。
参考书:冯老师的《整数与多项式》
说明:以Cracking the GRE Math Test相关章节为主。
抽象代数
群论及环域的基本概念及运算法则。
参考书:冯老师的《近世代数论》
说明:抽象代数的内容最近几年越来越多,今年考试中考到了极大理想。还好我在做REA的题目的时候碰到了高斯整环的题目,所以回去好好翻了翻书。大家要认真准备这一部分的内容。
离散数学
命题逻辑,图论初步(基本概念,表示法,邻接and关联距阵,基本运算定理如V+F-E=2),集合论(注意了解一下偏序的概念)。
参考书:J.A. Bondy and U.S.R. Murty,Graph theory with applications
说明:逻辑的题目比较简单,也就是命题逻辑的基本运算,最多再加上真值表,随便找一本离散数学的书看看基本概念就行了。集合论的题目也比较简单。不过由于系里面没有开图论的课,所以大家还是好好看书,Bondy这本书看看第一章就行了。
数值分析
高斯迭代法,插值法等基本运算法则。
参考书:李庆扬等的《数值计算原理》
说明:内容很少,我考试的时候没见过。
实变函数
可数性概念,可测,可积的概念,度量空间,内积等概念。
说明:以Cracking the GRE Math Test相关章节为主。
拓扑学
邻域系,可数性公理,紧集的概念,基本拓扑性质。参考书:J。 R。 Munkres, Topology
说明:重点,近几年的分量越来越大。以Cracking the GRE Math Test相关章节为主,不过据说考过foundamental group,大家还是好好看看书。
复变函数
基本概念,解析性(共厄调和的概念),柯西积分定理,TaylorLaurent展式(重点),保角变换(非重点),留数定理(重点)参考书:方企勤先生的《复变函数教程》,Lars V。 Ahlfors的Complex Analysis
说明:学过复变就行了,一定要记住基本公式。
概率论与统计
古典概型,单变量概率分布模型,二项式分布的正态近似参考书:李贤平的《概率论基础》
说明:以Cracking the GRE Math Test中相关章节为主,一般来说很简单。不过由于2字班没有学过古典概型(托文sir的福),所以我还是把李贤平的这本书好好看了看。统计方面不用担心,不会有难题,所以不用专门找书看。
复习计划
我从9月中旬开始准备gre数学考试,同时一边上课(只选了19学分,呵呵)一边准备gre数学专项考试,所以战线拉得比较长,断断续续近2个月。如果是像UnitarySpace、Johnwoo、mathbooks这样的牛人来准备,应该半个月就差不多了。下面就说说我的复习安排吧,献丑了。
第1-4周:认真钻研gre数学sub考试相关的书。读完之后做书后的仿真题以及97年的真题。(因为还在准备10月23日的gre数学考试,所以用了1个月的时间)
第5-6周:做REA的6套仿真题,同时复习各科内容,检查自己的知识缺陷。
第7周(考前的一个礼拜):看往年回忆题,同时再把gre数学sub考试题中不熟悉的部分复习一遍,把所做过的题目中做错的题目再看一边。基本就是这样^_^
应试建议
凭我的感觉,gre数学sub考试其实就是高考数学选择题的extended version。所以很多高考时做选择题的技巧基本可以照搬(比如排除法,代入法之类的。做了几套模拟题大家的感觉就更深刻了)。其实大家都是高考过来人,不过我还是要废话几句。
做题时不用慌,gre数学sub考试的试题难度并不高,都是考基本概念和结论(加上一些变化),时间基本上是刚好够用。虽然最近几年难度有所增加,不过对于清华的学生,只要不粗心,2分半钟内把正确选项选出来基本没有问题。(如果粗心怎么办?回去做几套高考数学题再来)不过题目难度是逐渐上升的,所以前面做题目的时候还是做快一点,最好每题用时不要超过2分钟。难题出现在45题之后。
如果遇到3分钟都做不出来的题目,要坚决放弃,留到最后再做。因为如果为了一道题目而放弃后面的简单题目是非常不值的。
如果一道题目一个错误选项都找不出来,最好不要轻易猜答案。Sub每道题的得分期望是0,如果乱猜的话,未必能得更多的分。(当然,如果人品足够好的话)
在平时准备的时候最好熟悉一下答题纸和试题册上相关信息的填涂,不过基本上和General Test差不多。样卷和答题纸在ETS提供的样题中有。
每次做模考卷,一定要在170分钟内一次性做完,不能今天做10道,明天做20道。因为sub考试的强度太大(比General Test要不少),如果平时没有训练过的话,到了考场上做到最后20题会受不了的,体力脑力都会透支的。
通过上述澳际留学小编为各位考生分享的怎么应对gre数学专项考试的内容,大家应该了解了gre数学中考sub的范围,抓住这些内容范围去展开适合自己的复习计划,也可以参考上面考生的计划,多吸取一些考试建议相信各位考生的gre数学sub考试能顺利通过。
Amy GUO 经验: 16年 案例:4272 擅长:美国,澳洲,亚洲,欧洲
本网站(www.aoji.cn,刊载的所有内容,访问者可将本网站提供的内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律规定,不得侵犯本网站及相关权利人的合法权利。除此以外,将本网站任何内容或服务用于其他用途时,须征得本网站及相关权利人的书面许可,并支付报酬。
本网站内容原作者如不愿意在本网站刊登内容,请及时通知本站,予以删除。