悉尼大学商学国贸双硕士毕业,现居澳洲,在澳学习生活15+年,从事教育咨询工作超过10年,澳洲政府注册教育顾问,上千成功升学转学签证案例,定期受邀亲自走访澳洲各类学校
您所在的位置: 首页> 新闻列表> 一道SAT2数学题及其解法.
下面是一道SAT2数学题及其解法的相关信息,这是一道关于函数方面的SAT2数学题,属于Level2方面的,难度并不大,但是对大家的逻辑思维水平还是有一些要求的。下面是详细内容,供大家参考,可以先做一下题目,然后在看看解释。
If , what value does approach as gets infinitely larger?
Answer Choices
(A)
(B)
(C)
(D)
(E)
The correct answer is E.
Explanation
Difficulty: Easy
One way to determine the value that approaches as gets infinitely larger is to rewrite the dinition of the function to use only negative powers of and then reason about the behavior of negative powers of as gets infinitely larger. Since the question is only concerned with what happens to as gets infinitely larger, one can assume that is positive. For , the expression is equivalent to the expression . As gets infinitely larger, the expression approaches the value , so as gets infinitely larger, the expression approaches the value . Thus, as gets infinitely larger, approaches .
Alternatively, one can use a graphing calculator to estimate the height of the horizontal asymptote for the function . Graph the function on an interval with “large” , say, from to .
By examining the graph, the all seem very close to . Graph the function again, from, say, to .
The vary even less from . In fact, to the scale of the coordinate plane shown, the graph of the functionis nearly indistinguishable from the asymptotic line . This suggests that as gets infinitely larger, approaches , that is, .
Note: The algebraic method is prerable, as it provides a proof that guarantees that the value approaches is . Although the graphical method worked in this case, it does not provide a complete justification; for example, the graphical method does not ensure that the graph resembles a horizontal line for “very large” such as .
以上就是这道SAT2数学题,后面包括了解法,非常详细,以文字和图片两种形式来解析的。SAT2数学考试分成了两个Level,大家可以根据自己的需要选择合适自己的考试项目进行适当的备考。
更多SAT2数学相关信息:
SAT2数学考试内容
Barron SAT2数学习题解答
一道关于渐近线的SAT2数学题
Amy GUO 经验: 16年 案例:4272 擅长:美国,澳洲,亚洲,欧洲
本网站(www.aoji.cn,刊载的所有内容,访问者可将本网站提供的内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律规定,不得侵犯本网站及相关权利人的合法权利。除此以外,将本网站任何内容或服务用于其他用途时,须征得本网站及相关权利人的书面许可,并支付报酬。
本网站内容原作者如不愿意在本网站刊登内容,请及时通知本站,予以删除。