悉尼大学商学国贸双硕士毕业,现居澳洲,在澳学习生活15+年,从事教育咨询工作超过10年,澳洲政府注册教育顾问,上千成功升学转学签证案例,定期受邀亲自走访澳洲各类学校
您所在的位置: 首页> 新闻列表> SAT数学练习题第9套 含答案.
转载请注明澳际留学
SAT考试数学练习题第九套 SAT problem solving practice test 9
1. (3 x 104) + (2 x 10²) + (4 x 10) =
A. 302400 B. 32400 C. 30240 D. 3240 E. 324
2. Andy solves problems 74 to 125 inclusive in a Math exercise. How many problems does he solve?
A. 53 B. 52 C. 51 D. 50 E. 49
3. If x and y are integers, and 3x + 2y = 13, which of the following could be the value of y ?
A. 0 B. 1 C. 2 D. 3 E. 4
4. In triangle ABC, AD = DB , DE is parallel to BC, and the area of triangle ABC is 40. What is the area of triangle ADE ?
A. 10 B. 15 C. 20 D. 30 E. it cannot be determined from the information given
5. If n > 0 , which of the following must be true?
I n² > 1 II n - n² < 0 III 2n - 1 > 0
A. I only B. II only C. III only D. I and II only E. none
6. If the slope of a line is ½ and the y-intercept is 3, what is the x-intercept of the same line?
A. 6 B. 3/2 C. 0 D. -2/3 E. -6
7. 6 people meet for a business lunch. Each person shakes hands once with each other person present. How many handshakes take place?
A. 30 B. 21 C. 18 D. 15 E. 10
8. If x² - y² = 55, and x - y = 11, then y =
A. 8 B. 5 C. 3 D. -8 E. -3
9. In a sports club with 30 members, 17 play badminton and 19 play tennis and 2 do not play either. How many members play both badminton and tennis?
A. 7 B. 8 C. 9 D. 10 E. 11
10. Rectangle ABCD has a perimeter of 26. The half circle with diameter AD has an area of 8π. What is the perimeter of the part of the figure that is not shaded?
A. 26 + 4π B. 18 + 8π C. 18 + 4π D. 14 + 4π E. 14 + 2π
SAT数学练习题第9套参考答案
1.Correct Answer: C
Explanation:
2 x 104 = 30,000; 2 x 102 = 200; 4 x 10 = 40 The total is 30,240
2.Correct Answer: B
Explanation:
To find how many problems in the series we need to take the difference and add one. 125 - 74 = 51; 51 + 1 =52
3.Correct Answer: C
Explanation:
Substitute the given values for y and check whether you get an integer value for x. For example, using 0 we get 3x = 13; x = 13/3 which is not a whole number. The right answer is 2, since 3x + 2(2) = 13; 3x = 13 - 4 = 9; x = 9/3 = 3.
4.Correct Answer: A
Explanation:
The big triangle ABC is similar to the small triangle ADE because their bases are parallel. If corresponding side of two similar triangles are known the ratio of the areas is also known. In this case, let AD be one unit, then AB is 2 units (given that AB = AD + DB). The ratios of the sides is 1 : 2. The ratio of the areas will be (1)2 : (2)2 ; 1 : 4 Since the big triangle has area 40, using the ratio, the small has area 10.
5.Correct Answer: E
Explanation:
Given that n is positive, it could be a positive fraction, 1, or a fraction of whole number greater than 1. If n = 1, then case I is not true since n2 = 1 Likewise in II if n = 1, n - n2 = 0, and the statement is not true. In III, if n = ½, then 2n - 1 = 0, and again the statement is incorrect.
6.Correct Answer: E
Explanation:
The equation for a straight line is y = mx + c, where m = slope and c = y-intercept. Putting the given values in this equation we have y = x/2 + 3 The x-intercept occurs where y = 0. Thus, 0 = x/2 + 3 ; -3 = x/2 ; -6 =x
7.Correct Answer: D
Explanation:
Imagine the first person of the six. He or she will have to shake hands with each of the other 5. Now turn to the second person. He or she will have to shake with the other five, but he she has already shaken with the first person. This means 4 new handshakes. The third person will have to shake with 5 - 2 = 3 people, and so on. Total handshakes = 5 + 4 + 3 + 2 + 1 = 15
8.Correct Answer: E
Explanation:
x2 - y2 can be expressed as (x + y)(x - y); since x - y =11 we can write (x + y)11 = 55; therore x + y = 5 Adding the two equations x + y = 5 and x - y = 11 we get 2x = 16; x = 8 Therore 8 - y = 11; y = -3
9.Correct Answer: B
Explanation:
Since 2 do not play either, there are 28 members who play one sport or the other. Let the number who play both be n. Total (28) will be made up of only badminton players (17 - n), plus only tennis (19 - n) and those who play both (n). 28 = (17 - n) + (19 - n) + n 28 = 36 - n ; n = 8
10.Correct Answer: C
Explanation:
The total perimeter of the un-shaded part is made up of three sides of the rectangle and the perimeter of the half-circle. The area of a half circle = ½ π r2 8 π = ½ π r2; therore r = 4 The perimeter of the half circle is ½ 8 π = 4 π The diameter of the circle (8) = the length of the rectangle. Total perimeter of the rectangle = 26 Three sides measure 26 - 8 = 18 Ans. 18 + 4π
SAT数学练习题第9套 含答案SAT数学练习题第9套 含答案转载请注明澳际留学
SAT考试数学练习题第九套 SAT problem solving practice test 9
1. (3 x 104) + (2 x 10²) + (4 x 10) =
A. 302400 B. 32400 C. 30240 D. 3240 E. 324
2. Andy solves problems 74 to 125 inclusive in a Math exercise. How many problems does he solve?
A. 53 B. 52 C. 51 D. 50 E. 49
3. If x and y are integers, and 3x + 2y = 13, which of the following could be the value of y ?
A. 0 B. 1 C. 2 D. 3 E. 4
4. In triangle ABC, AD = DB , DE is parallel to BC, and the area of triangle ABC is 40. What is the area of triangle ADE ?
A. 10 B. 15 C. 20 D. 30 E. it cannot be determined from the information given
5. If n > 0 , which of the following must be true?
I n² > 1 II n - n² < 0 III 2n - 1 > 0
A. I only B. II only C. III only D. I and II only E. none
6. If the slope of a line is ½ and the y-intercept is 3, what is the x-intercept of the same line?
A. 6 B. 3/2 C. 0 D. -2/3 E. -6
7. 6 people meet for a business lunch. Each person shakes hands once with each other person present. How many handshakes take place?
A. 30 B. 21 C. 18 D. 15 E. 10
8. If x² - y² = 55, and x - y = 11, then y =
A. 8 B. 5 C. 3 D. -8 E. -3
9. In a sports club with 30 members, 17 play badminton and 19 play tennis and 2 do not play either. How many members play both badminton and tennis?
A. 7 B. 8 C. 9 D. 10 E. 11
10. Rectangle ABCD has a perimeter of 26. The half circle with diameter AD has an area of 8π. What is the perimeter of the part of the figure that is not shaded?
A. 26 + 4π B. 18 + 8π C. 18 + 4π D. 14 + 4π E. 14 + 2π 上12下
共2页
阅读全文Amy GUO 经验: 16年 案例:4272 擅长:美国,澳洲,亚洲,欧洲
本网站(www.aoji.cn,刊载的所有内容,访问者可将本网站提供的内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律规定,不得侵犯本网站及相关权利人的合法权利。除此以外,将本网站任何内容或服务用于其他用途时,须征得本网站及相关权利人的书面许可,并支付报酬。
本网站内容原作者如不愿意在本网站刊登内容,请及时通知本站,予以删除。