悉尼大学商学国贸双硕士毕业,现居澳洲,在澳学习生活15+年,从事教育咨询工作超过10年,澳洲政府注册教育顾问,上千成功升学转学签证案例,定期受邀亲自走访澳洲各类学校
您所在的位置: 首页> 新闻列表> SAT数学:三角形知识讲解(1).
Triangles pop up all over the Math section. There are questions specifically about triangles, questions that ask about triangles inscribed in polygons and circles, and questions about triangles in coordinate geometry.
Three Sides, Four Fundamental Properties Every triangle, no matter how special, follows four main rules. 1. Sum of the Interior Angles If you were trapped on a deserted island with tons of SAT questions about triangles, this is the one rule you’d need to know: The sum of the interior angles of a triangle is 180°. If you know the measures of two of a triangle’s angles, you’ll always be able to find the third by subtracting the sum of the first two from 180. 2. Measure of an Exterior Angle The exterior angle of a triangle is always supplementary to the interior angle with which it shares a vertex and equal to the sum of the measures of the remote interior angles. An exterior angle of a triangle is the angle formed by extending one of the sides of the triangle past a vertex. In the image below, d is the exterior angle. Since d and c together form a straight angle, they are supplementary: . According to the first rule of triangles, the three angles of a triangle always add up to , so . Since and , d must equal a + b. 3. Triangle Inequality Rule If triangles got together to write a declaration of independence, they’d have a tough time, since one of their dining rules would be this: The length of any side of a triangle will always be less than the sum of the lengths of the other two sides and greater than the difference of the lengths of the other two sides. There you have it: Triangles are unequal by dinition. Take a look at the figure below: The triangle inequality rule says that c – b < a < c + b. The exact length of side a depends on the measure of the angle created by sides b and c. Witness this triangle: Using the triangle inequality rule, you can tell that 9 – 4 < x < 9 + 4, or 5 < x < 13. The exact value of x depends on the measure of the angle opposite side x. If this angle is large (close to ) then x will be large (close to 13). If this angle is small (close to ), then x will be small (close to 5). The triangle inequality rule means that if you know the length of two sides of any triangle, you will always know the range of possible side lengths for the third side. On some SAT triangle questions, that’s all you’ll need. 4. Proportionality of Triangles Here’s the final fundamental triangle property. This one explains the relationships between the angles of a triangle and the lengths of the triangle’s sides. In every triangle, the longest side is opposite the largest angle and the shortest side is opposite the smallest angle. In this figure, side a is clearly the longest side and is the largest angle. Meanwhile, side c is the shortest side and is the smallest angle. So c < b < a and C < B < A. This proportionality of side lengths and angle measures holds true for all triangles. See if you can use this rule to solve the question below:
|
Amy GUO 经验: 16年 案例:4272 擅长:美国,澳洲,亚洲,欧洲
本网站(www.aoji.cn,刊载的所有内容,访问者可将本网站提供的内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律规定,不得侵犯本网站及相关权利人的合法权利。除此以外,将本网站任何内容或服务用于其他用途时,须征得本网站及相关权利人的书面许可,并支付报酬。
本网站内容原作者如不愿意在本网站刊登内容,请及时通知本站,予以删除。