悉尼大学商学国贸双硕士毕业,现居澳洲,在澳学习生活15+年,从事教育咨询工作超过10年,澳洲政府注册教育顾问,上千成功升学转学签证案例,定期受邀亲自走访澳洲各类学校
您所在的位置: 首页> 新闻列表> SAT数学练习题 含详细答案解析(1).
下面是5道SAT数学练习题,每道题目后面都有答案和详细的解析,希望同学们在练习的时候先不看答案,看看自己的能做对几道题,然后再与答案对照,找出错题原因,针对自己的SAT数学复习进行查漏补缺。
1. If f(x) = x² – 3, where x is an integer, which of the following could be a value of f(x)?
I 6
II 0
III -6
A. I only
B. I and II only
C. II and III only
D. I and III only
E. I, II and III
Correct Answer: A
解析:
Choice I is correct because f(x) = 6 when x=3. Choice II is incorrect because to make f(x) = 0, x² would have to be 3. But 3 is not the square of an integer. Choice III is incorrect because to make f(x) = 0, x² would have to be –3 but squares cannot be negative. (The minimum value for x2 is zero; hence, the minimum value for f(x) = -3)
2. For how many integer values of n will the value of the expression 4n + 7 be an integer greater than 1 and less than 200?
A. 48
B. 49
C. 50
D. 51
E. 52
Correct Answer: C
解析:
1 < 4n + 7 < 200. n can be 0, or -1. n cannot be -2 or any other negative integer or the expression 4n + 7 will be less than1. The largest value for n will be an integer < (200 - 7) /4. 193/4 = 48.25, hence 48. The number of integers between -1 and 48 inclusive is 50
Amy GUO 经验: 16年 案例:4272 擅长:美国,澳洲,亚洲,欧洲
本网站(www.aoji.cn,刊载的所有内容,访问者可将本网站提供的内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律规定,不得侵犯本网站及相关权利人的合法权利。除此以外,将本网站任何内容或服务用于其他用途时,须征得本网站及相关权利人的书面许可,并支付报酬。
本网站内容原作者如不愿意在本网站刊登内容,请及时通知本站,予以删除。