悉尼大学商学国贸双硕士毕业,现居澳洲,在澳学习生活15+年,从事教育咨询工作超过10年,澳洲政府注册教育顾问,上千成功升学转学签证案例,定期受邀亲自走访澳洲各类学校
您所在的位置: 首页> 新闻列表> SAT数学题练习两道.
下面是两道数学题,都是关于几何方面的,大家可以在备考SAT数学考试的时候对此进行适当的练习。SAT数学题对于中国考生的作用,大部分都是用来熟悉题型和解答方法,而不是作为知识点的积累,所以大家在备考的时候,一定要抓住重点。
If triangle above is congruent to triangle (not shown), which of the following must be the length of one side of triangle ?
Answer Choices
(A)
(B)
(C)
(D)
(E) It cannot be determined from the information given.
The correct answer is D
Explanation
Triangle is congruent to triangle , so the lengths of the three sides of triangle are the same as the lengths of the three sides of triangle . Triangle is a - - triangle with hypotenuse of length , so the other two sides of triangle have lengths and . Therore, the lengths of the sides of triangle must be , , and . Of the choices given, only is one of these values.
If two sides of the triangle above have lengths 5and 6, the perimeter of the triangle could be which of the following?
. . .
Answer Choices
(A) only
(B) only
(C) only
(D) and only
(E) , , and
The correct answer is B
Explanation
Difficulty: Hard
In questions of this type, statements , , and should each be considered independently of the others. You must determine which of those statements could be true.
Statement cannot be true. The perimeter of the triangle cannot be , since the sum of the two given sides is without even considering the third side of the triangle.
Continuing to work the problem, you see that in , if the perimeter were , then the third side of the triangle would be , or . A triangle can have side lengths of , , and . So the perimeter of the triangle could be .
Finally, consider whether it is possible for the triangle to have a perimeter of . In this case, the third side of the triangle would be . The third side of this triangle cannot be , since the sum of the other two sides is not greater than . By the Triangle Inequality, the sum of the lengths of any two sides of a triangle must be greater than the length of the third side. So the correct answer is only.
以上就是这两道SAT数学题的全部内容,都是选择题型,来自SAT考试官方网站,后面附有详细的答案解析。大家可以在备考SAT数学考试的时候,根据自己的思考过程了解一些SAT数学考试中几何方面的知识。
更多SAT数学相关:
SAT数学练习题一道
6道SAT数学练习题
SAT数学练习题六道(代数)
Amy GUO 经验: 16年 案例:4272 擅长:美国,澳洲,亚洲,欧洲
本网站(www.aoji.cn,刊载的所有内容,访问者可将本网站提供的内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律规定,不得侵犯本网站及相关权利人的合法权利。除此以外,将本网站任何内容或服务用于其他用途时,须征得本网站及相关权利人的书面许可,并支付报酬。
本网站内容原作者如不愿意在本网站刊登内容,请及时通知本站,予以删除。