悉尼大学商学国贸双硕士毕业,现居澳洲,在澳学习生活15+年,从事教育咨询工作超过10年,澳洲政府注册教育顾问,上千成功升学转学签证案例,定期受邀亲自走访澳洲各类学校
您所在的位置: 首页> 新闻列表> SAT数学题考查范围.
SAT考试不仅考察考生的学术水平、学术能力与学术素质,同时还检测考生的学术态度。考生在参加SAT考试时,答错题目要扣分。下面澳际小编为大家具体介绍SAT数学题考查范围,希望对大家有所帮助。
I. ARITHMETIC
A. Whole numbers
1. Operations—addition, subtraction, multiplication, division
2. Prime and composite numbers
3. Factors and divisors
B. Fractions
1. Types—proper, improper, mixed numbers
2. Operations
C. Decimals
1. Operations
2. Conversions
a) Decimals to fractions
b) Fractions to decimals
3. Rounding and approximation
4. Powers of 10
a) Multiplication
b) Division
c) Scientific notation
D. Percent
1. Conversions
a) Percent to decimal
b) Decimal to percent
2. Percent problems
E . Ratio and proportion
F . Square roots
G. Averages
H . Metric measurement
II. ALGEBRA
A . Signed numbers
1. Absolute value
2. Inequality and order of signed numbers
3. Addition, subtraction, multiplication, division
4. Order of operations
5. Grouping symbols
6. Evaluating algebraic expressions and formulas
B. Properties of operations
1. Commutative properties
2. Associative properties
3. Distributive properties
4. Special properties of zero
5. Special properties of one
6. Additive and multiplicative inverses
C . Operations with polynomials
1. Exponents and coficients
2. Addition and subtraction
3. Multiplication
4. Division
D . Equations in one variable
1. Methods of solution
2. Literal equations
E . Inequalities in one variable
F . Systems of equations and inequalities in two variables
G. Verbal Problems
1. Number
2. Consecutive integer
3. Motion
4. Coin
5. Mixture
6. Age
7. Work
8. Variation—direct and inverse
H. Special products and factoring
1. Common monomial factors
2. Trinomials of the form ax2 + bx + c
3. Difference of two squares
4. Complete factoring
I. Algebraic fractions
1. Simplifying fractions
2. Multiplication
3. Division
4. Addition and subtraction
a) Same denominators
b) Different denominators
5. Complex fractions
6. Equations involving fractions
J . Radicals and irrational numbers
1. Simplifying radicals
2. Addition and subtraction of radicals
3. Multiplication and division of radicals
4. Rationalizing denominators
5. Radical equations
6. Fractional exponents
K. Solution of quadratic equations
1. Factoring
2. Completing the square
3. Formula
L. Graphing
1. Ordered pairs in the plane
2. Methods of graphing linear equations
a) Pairs in the solution set
b) Intercepts
c) Slope and slope-intercept method
3. Parallel and perpendicular lines
4. Graphing inequalities
5. Graphical solution of systems of equations
M . Solution of simple cubic equations
1. Factor theorem
2. Remainder theorem
3. Synthetic division
4. Irrational and complex roots
5. Solving simple cubic equations
III. GEOMETRY
A . Angles
1. Types—acute, right, obtuse
2. Complements and supplements
3. Vertical angles
B . Lines
1. Parallel lines and their angles
2. Perpendicular lines
C. Triangles
1. Sum of the angles
2. Congruent triangles
3. Similar triangles
4. Special triangles
a) Isosceles
b) Equilateral
c) Right (Pythagorean Theorem)
5. Vectors
D . Polygons
1. Quadrilaterals
a) Parallelogram
b) Rectangle
c) Square
d) Rhombus
e) Trapezoid
f) Regular Polygons
E. Circles
1. Special lines and their related angles
a) Radius and diameter
b) Chord
c) Tangent
d) Secant
2. Angle and arc measurement
3. Polygons inscribed in circles
F . Perimeter and area
1. Triangles
2. Polygons
3. Circles
a) Circumference and arc length
b) Area of sectors and segments
G . Volume
1. Pyramid
2. Prism
3. Cylinder
4. Cone
5. Sphere
6. Cube
7. Rectangular solid
H . Coordinate geometry
1. Coordinate representation of points
2. Distance between two points
3. Midpoint of a line segment
4. Slope of a line
5. Parallel and perpendicular lines
I. Basic trigonometry
1. Dinitions of sine, cosine, tangent
2. Trigonometry in special triangles
a) 30°–60°–90° triangle
b) Isoceles right triangle
3. Trigonometric problems
a) Angle of elevation
b) Angle of depression
IV. FUNCTIONS AND THEIR GRAPHS
A . Relations and functions
1. Ordered pairs
2. Function notation
3. Domain and range
4. One-to-one functions
5. Inverse functions
6. Combining functions
a) Addition, subtraction, multiplication, division
b) Composition
B. Graphs
1. Linear
a) Slope
b) Intercepts
2. Special functions
a) Absolute value function
b) Step functions
3. Polynominal and rational functions
a) Quadratic—parabola
i. Axis of symmetry
ii. Vertex
b) Cubics
c) Hyperbola of the form xy = k
4. Related non-function graphs
a) Circle
b) Ellipse
c) Hyperbola of the form ax2 – by2 = c
5. Graphs of inverse functions
V. REAL NUMBER SYSTEM
A . Subsets of the real numbers
1. Natural numbers
a) Primes
b) Composites—prime factorization
2. Integers
a) Multiples and divisors
i. Factors
ii. Divisibility
iii. Least common multiple
iv. Greatest common divisor
v. Perfect squares
b) Odd and even integers
3. Rational and irrational numbers
a) Decimal representations
b) Simplification of radicals and exponents
c) Identifying rational and irrational numbers
B . Operations and properties
1. Properties of the binary operations
a) Closure
b) Commutative properties
c) Associative properties
d) Distributive properties
2. Absolute value
3. Real number line
a) Order
b) Density
c) Completeness
4. Properties of zero and one
a) Identity elements
b) Additive and multiplicative inverses
c) Division involving zero
d) Zero as an exponent
5. Nature of the roots of quadratic equations
6. Pythagorean triples
VI. LOGIC
A . Propositions
1. Simple statements
a) Symbols
b) Quantifiers (all, some)
2. Negation
3. Compound statements
a) Conjunction
b) Disjunction
c) Implication (conditional statements)
i. Necessary conditions
ii. Sufficient conditions
iii. Equivalence (necessary and sufficient conditions)
d) Derived implications
i. Converse
ii. Inverse
iii. Contrapositive
B . Truth tables
C . Methods of proof
1. Valid arguments
a) Direct
b) Indirect—contradiction and counterexample
2. Invalid arguments—fallacies
VII. SETS
A . Meaning and symbols
1. Set notation
2. Set membership
3. Ordered pairs
4. Cardinality of a set
B . Types of sets
1. Finite
2. Infinite
3. Empty
C. Relationships between sets
1. Equal sets
2. Equivalent sets
3. Subsets
4. Complements
D. Set Operations
1. Union
2. Intersection
3. Cartesian products
4. Laws of set operations
5. Closure
E . Venn diagrams
VIII. TRIGONOMETRY
A. Trigonometry of the right triangle
1. Dinitions of the six functions
2. Relations of the functions of the complementary angles
3. Reciprocal relations among the functions
4. Variations in the functions of acute angles
5. Pythagorean and quotient relations
6. Functions of 30°, 45°, and 60°
7. Applications of the functions to right triangle problems
B. Trigonometric functions of the general angle
1. Generating an angle of any size
2. Radians and degrees
3. Using radians to determine arc length
4. Dinitions of the functions of an angle
5. Signs of the functions in the four quadrants
6. Functions of the quadrantal angle
7. Finding the value of functions of any angle
C . Identities and equations
1. Difference between identities in equations
2. Proving identities
3. Solving linear trigonometric functions
4. Solving trigonometric quadratic equations
D . Generalized trigonometric relationships
1. Functions of the sum of two angles
2. Functions of the difference of two angles
3. Functions of the double angle
4. Functions of the half angle
E . Graphs of trigonometric functions
1. Graphs of the sine, cosine, and tangent curves
2. Properties of the sine, cosine, and tangent curves
3. Dinitions of amplitude, period, and frequency
4. Solving trigonometric equations graphically
F . Solutions of oblique triangles
1. Law of sines
2. Law of cosines
3. Using logarithms to solve oblique triangle problems
4. Vector problems—parallelogram of forces
5. Navigation problems
IX. MISCELLANEOUS TOPICS
A. Complex numbers
1. Meaning
2. Operations
a) Addition and subtraction
b) Multiplication and division
i. Powers of i
ii. Complex conjugate
3. Complex roots of quadratic equations
B . Number Bases
1. Converting from base 10 to other bases
2. Converting from other bases to base 10
3. Operations in other bases
C . Exponents and logarithms
1. Meaning of logarithms
2. Computation with exponents and logarithms
3. Equations
4. Graphs of exponential and logarithmic functions
D . Binary operations
1. Dinition of binary operations
2. Properties of binary operations
3. Application to modular arithmetic
E . Identity and inverse elements
1. Addition
2. Multiplication
3. Other operations
以上便是SAT数学题考查范围的相关介绍,非常详细,希望对大家有所帮助。想要了解更多关于SAT考试的信息,请拨打免费留学培训热线:400-601-0022,或者直接点击网页上的“在线咨询”,与我们的澳际培训专家一对一沟通交流!
SAT数学题考查范围23SAT考试不仅考察考生的学术水平、学术能力与学术素质,同时还检测考生的学术态度。考生在参加SAT考试时,答错题目要扣分。下面澳际小编为大家具体介绍SAT数学题考查范围,希望对大家有所帮助。
I. ARITHMETIC
A. Whole numbers
1. Operations—addition, subtraction, multiplication, division
2. Prime and composite numbers
3. Factors and divisors
B. Fractions
1. Types—proper, improper, mixed numbers
2. Operations
C. Decimals
1. Operations
2. Conversions
a) Decimals to fractions
b) Fractions to decimals
3. Rounding and approximation
4. Powers of 10
a) Multiplication
b) Division
c) Scientific notation
D. Percent
1. Conversions
a) Percent to decimal
b) Decimal to percent
2. Percent problems
E . Ratio and proportion
F . Square roots
G. Averages
H . Metric measurement
II. ALGEBRA
A . Signed numbers
1. Absolute value
2. Inequality and order of signed numbers
3. Addition, subtraction, multiplication, division
4. Order of operations
5. Grouping symbols
6. Evaluating algebraic expressions and formulas
B. Properties of operations
1. Commutative properties
2. Associative properties
3. Distributive properties
4. Special properties of zero
5. Special properties of one
6. Additive and multiplicative inverses
C . Operations with polynomials
1. Exponents and coficients
2. Addition and subtraction
3. Multiplication
4. Division
D . Equations in one variable
1. Methods of solution
2. Literal equations
E . Inequalities in one variable
F . Systems of equations and inequalities in two variables
G. Verbal Problems
1. Number
2. Consecutive integer
3. Motion
4. Coin
5. Mixture
6. Age
7. Work
8. Variation—direct and inverse
H. Special products and factoring
1. Common monomial factors
2. Trinomials of the form ax2 + bx + c
3. Difference of two squares
4. Complete factoring
I. Algebraic fractions
1. Simplifying fractions
2. Multiplication
3. Division
4. Addition and subtraction
a) Same denominators
b) Different denominators
5. Complex fractions
6. Equations involving fractions
J . Radicals and irrational numbers
1. Simplifying radicals
2. Addition and subtraction of radicals
3. Multiplication and division of radicals
4. Rationalizing denominators
5. Radical equations
6. Fractional exponents
K. Solution of quadratic equations
1. Factoring
2. Completing the square
3. Formula
L. Graphing
1. Ordered pairs in the plane
2. Methods of graphing linear equations
a) Pairs in the solution set
b) Intercepts
c) Slope and slope-intercept method
3. Parallel and perpendicular lines
4. Graphing inequalities
5. Graphical solution of systems of equations
M . Solution of simple cubic equations
1. Factor theorem
2. Remainder theorem
3. Synthetic division
4. Irrational and complex roots
5. Solving simple cubic equations
III. GEOMETRY
A . Angles
1. Types—acute, right, obtuse
2. Complements and supplements
3. Vertical angles
B . Lines
1. Parallel lines and their angles
2. Perpendicular lines
C. Triangles
1. Sum of the angles
2. Congruent triangles
3. Similar triangles
4. Special triangles
a) Isosceles
b) Equilateral
c) Right (Pythagorean Theorem)
5. Vectors
D . Polygons
1. Quadrilaterals
a) Parallelogram
b) Rectangle
c) Square
d) Rhombus
e) Trapezoid
f) Regular Polygons
上123下
共3页
阅读全文Amy GUO 经验: 16年 案例:4272 擅长:美国,澳洲,亚洲,欧洲
本网站(www.aoji.cn,刊载的所有内容,访问者可将本网站提供的内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律规定,不得侵犯本网站及相关权利人的合法权利。除此以外,将本网站任何内容或服务用于其他用途时,须征得本网站及相关权利人的书面许可,并支付报酬。
本网站内容原作者如不愿意在本网站刊登内容,请及时通知本站,予以删除。