悉尼大学商学国贸双硕士毕业,现居澳洲,在澳学习生活15+年,从事教育咨询工作超过10年,澳洲政府注册教育顾问,上千成功升学转学签证案例,定期受邀亲自走访澳洲各类学校
您所在的位置: 首页> 新闻列表> 备考SAT数学 公式永远不落伍.
我们应该都知道sat数学公式是sat数学的灵魂,没有这些公式,数学题就无法解答,备考sat数学部分绝对要把公式掌握好,下面小编就为大家总结了一些常会考到的数学公式,相信会对同学们有帮助。
SAT数学部分的考试难度并不是很大,一般相当于国内高一和高二的数学程度,但要想拿到数学800的满分并不是一件轻松的事。下面来看下SAT数学公式。
1)两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)
2)倍角公式
tan2A=2tanA/[1-(tan^2)A]
cot2A=[(cot^2)A-1]/2cotA
cos2A=cos^2A-sin^2=2(cos^2)A-1=1-2(sin^2)A
sin2A=2sinAcosA
3)半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=(+&-)√((1-cosA)/((1+cosA))=√(sinA/(1+cosA)) =√((1-cosA)/sinA)
cot(A/2)=(+&-)√((1+cosA)/((1-cosA))
4)和差化积
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2)
cosA+cosB=2cos((A+B)/2)cos((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
cotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB
5) 积化和差公式:
sinα?cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα?sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα?cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα?sinβ=-(1/2)[cos(α+β)-cos(α-β)]
6)正弦定理 a/sinA=b/sinB=c/sinC=2R
(R 表示三角形的外接圆半径)
7)余弦定理 b^2=a^2+c^2-2accosB
(B是边a和边c的夹角)
8) 基本关系式:
?平方关系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
?积的关系:
sinα=tanα*cosα cosα=cotα*sinα
tanα=sinα*secα cotα=cosα*cscα
secα=tanα*cscα cscα=secα*cotα
?倒数关系:
tanα?cotα=1
sinα?cscα=1
cosα?secα=1
9)勾股定理:
a,b,c分别代表直角三角形的勾、股、弦三边之长
(a^2)+(b^2)=(C^2)
其变形b^2=c^2-a^2=(c-a)(c+a)
a^2=c^2-b^2=(c-b)(c+b),
c^2=2ab+(b-a)^2
10)某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n^2
上面得这些sat数学公式大家一定要牢记,会对你的sat数学考试起到很关键的作用,如果想了解更多关于sat数学部分的相关信息,请关注澳际教育平台的sat考试频道,小编会为大家持续更新信息,欢迎您的访问。
澳际六步曲为您进行签证辅导和后期服务,我们具体的服务项目如下:
1. 分析申请人的情况,制定个性化的签证方案
2. 指导申请人办理签证所需材料
3. 签证模拟培训,并指导申请人预约签证
4. 行前指导,协助申请人预订机票、购买保险等
5. 协助安排同城、同校申请人结伴而行
Amy GUO 经验: 16年 案例:4272 擅长:美国,澳洲,亚洲,欧洲
本网站(www.aoji.cn,刊载的所有内容,访问者可将本网站提供的内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律规定,不得侵犯本网站及相关权利人的合法权利。除此以外,将本网站任何内容或服务用于其他用途时,须征得本网站及相关权利人的书面许可,并支付报酬。
本网站内容原作者如不愿意在本网站刊登内容,请及时通知本站,予以删除。