悉尼大学商学国贸双硕士毕业,现居澳洲,在澳学习生活15+年,从事教育咨询工作超过10年,澳洲政府注册教育顾问,上千成功升学转学签证案例,定期受邀亲自走访澳洲各类学校
您所在的位置: 首页> 新闻列表> SAT写作经典例子之法拉第.
下面为大家推荐的是关于法拉第的SAT写作经典例子,在这篇SAT写作例子中详细的介绍了英国物理学家和化学家法拉第的生平以及他所取得的成就和对社会的影响。大家和澳际小编一起来看看这位伟人的故事吧。
直接获取澳际名师的服务点击进入 >>>>有问题?找免费的澳际专家咨询! 或联系QQ客服: ,也可以通过在线咨询处留言,把您最关心的问题告诉我们。
The English chemist and physicist Michael Faraday, b. Sept. 22, 1791, d.Aug. 25, 1867, is known for his pioneering experiments in electricity andmagnetism. Many consider him the greatest experimentalist who ever lived.
Several concepts that he derived directly from experiments, such as lines of magnetic force, have become common ideas in modern physics.
Faraday was born at Newington, Surrey, near London. He received little more than a primary education, and at the age of 14 he was apprenticed to a bookbinder. There he became interested in the physical and chemical works of the time. After hearing a lecture by the famous chemist Humphry Davy, he sent Davy the notes he had made of his lectures. As a result Faraday was appointed, at the age of 21, assistant to Davy in the laboratory of the Royal Institution in London.
During the initial years of his scientific work, Faraday occupied himself mainly with chemical problems. He discovered two new chlorides of carbon and succeeded in liquying chlorine and other gases. He isolated benzene in 1825, the year in which he was appointed director of the laboratory.
Davy, who had the greatest influence on Faraday&aposs thinking, had shown in 1807 that the metals sodium and potassium can be precipitated from their compounds by an electric current, a process known as electrolysis.
Faraday&aposs vigorous pursuit of these experiments led in 1834 to what became known as Faraday&aposs laws of electrolysis.
Faraday&aposs research into electricity and electrolysis was guided by the beli that electricity is only one of the many manifestations of the unified forces of nature, which included heat, light, magnetism, and chemical affinity. Although this idea was erroneous, it led him into the field of electromagnetism, which was still in its infancy.
In 1785, Charles Coulomb had been the first to demonstrate the manner in which electric charges repel one another, and it was not until 1820 that Hans Christian Oersted and Andre Marie Ampere discovered that an electric current produces a magnetic field. Faraday&aposs ideas about conservation of energy led him to believe that since an electric current could cause a magnetic field, a magnetic field should be able to produce an electric current. He demonstrated this principle of induction in 1831. Faraday expressed the electric current induced in the wire in terms of the number of lines of force that are cut by the wire.
The principle of induction was a landmark in applied science, for it made possible the dynamo, or generator, which produces electricity by mechanical means.
Faraday&aposs introduction of the concept of lines of force was rejected by most of the mathematical physicists of Europe, since they assumed that electric charges attract and repel one another, by action at a distance, making such lines unnecessary. Faraday had demonstrated the phenomenon of electromagnetism in a series of experiments, however.
This experimental necessity probably led the physicist James Clerk Maxwell to accept the concept of lines of force and put Faraday&aposs ideas into mathematical form, thus giving birth to modern field theory.
Faraday&aposs discovery (1845) that an intense magnetic field can rotate the plane of polarized light is known today as the Faraday fect. The phenomenon has been used to elucidate molecular structure and has yielded information about galactic magnetic fields.
Faraday described his numerous experiments in electricity and electromagnetism in three volumes entitled Experimental Researches in Electricity (1839, 1844, 1855); his chemical work was chronicled in Experimental Researches in Chemistry and Physics (1858). Faraday ceased research work in 1855 because of declining mental powers, but he continued as a lecturer until 1861. A series of six children&aposs lectures published in 1860 as The Chemical History of a Candle, has become a classic of science literature.
迈克尔·法拉第(Michael Faraday,公元1791~公元1867)英国物理学家、化学家,也是著名的自学成才的科学家。生于萨里郡纽因顿一个贫苦铁匠家庭。仅上过小学。1831年,他作出了关于力场的关键性突破,永远改变了人类文明。1815年5月回到皇家研究所在戴维指导下进行化学研究。1824年1月当选皇家学会会员,1825年2月任皇家研究所实验室主任,1833----1862任皇家研究所化学教授。1846年荣获伦福德奖章和皇家勋章。
以上就是关于法拉第的SAT写作经典例子的全部内容,后面附有详细的汉语背景介绍。大家在备考自己的SAT写作考试的时候,可以根据自己的实际情况进行参考,根据不同的写作话题选择恰当的切入点。
澳际倾情回馈客户,零利润SAT香港考团,详细信息
更多SAT写作相关:
北京SAT写作培训
SAT写作例子之Robert Owen
如何准备SAT写作例子
SAT写作经典例子之歌德
Amy GUO 经验: 17年 案例:4539 擅长:美国,澳洲,亚洲,欧洲
本网站(www.aoji.cn,刊载的所有内容,访问者可将本网站提供的内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律规定,不得侵犯本网站及相关权利人的合法权利。除此以外,将本网站任何内容或服务用于其他用途时,须征得本网站及相关权利人的书面许可,并支付报酬。
本网站内容原作者如不愿意在本网站刊登内容,请及时通知本站,予以删除。