悉尼大学商学国贸双硕士毕业,现居澳洲,在澳学习生活15+年,从事教育咨询工作超过10年,澳洲政府注册教育顾问,上千成功升学转学签证案例,定期受邀亲自走访澳洲各类学校
您所在的位置: 首页> 新闻列表> SAT官方每日一题 2017年6月15日.
SAT试题类型:数学选择题 Mathematics > Standard Multiple Choice Read the following SAT test question and then click on a button to select your answer. What is the maximum number of nonoverlapping squares with sides of length 3 that will fit inside of a square with sides of length 6? (A) Two (B) Three (C) Four (D) Six (E) Nine 答案:C Explanation Choice (C) is correct. A square with sides of length 3 has area 9, and a square with sides of length 6 has area 36. Thus at most 36 ÷ 9 = 4 squares of side length 3 can fit inside a square of side length 6 without overlapping. And in fact, it is possible to fit the four squares of side length 3 inside a square of side length 6 with no overlap; if the four squares with sides of length 3 are arranged in two rows with two squares in each row, they will fit inside of the square with sides of length 6 without overlapping. Therore, the maximum number of nonoverlapping squares with sides of length 3 that will fit inside of a square with sides of length 6 is four.
Amy GUO 经验: 16年 案例:4272 擅长:美国,澳洲,亚洲,欧洲
本网站(www.aoji.cn,刊载的所有内容,访问者可将本网站提供的内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律规定,不得侵犯本网站及相关权利人的合法权利。除此以外,将本网站任何内容或服务用于其他用途时,须征得本网站及相关权利人的书面许可,并支付报酬。
本网站内容原作者如不愿意在本网站刊登内容,请及时通知本站,予以删除。