悉尼大学商学国贸双硕士毕业,现居澳洲,在澳学习生活15+年,从事教育咨询工作超过10年,澳洲政府注册教育顾问,上千成功升学转学签证案例,定期受邀亲自走访澳洲各类学校
您所在的位置: 首页> 新闻列表> 雅思阅读练习题(8)
本文为大家收集整理了雅思阅读练习题。雅思阅读备考中,同学们需要选择一些难度恰当的练习题来练习并检测自己的复习效果。
Time to Cool It 让时间冷静下来
1 REFRIGERATORS are the epitome of clunky technology: solid, reliable and just a little bitdull. They have not changed much over the past century, but then they have not needed to. They are based on a robust and fective idea—draw heat from the thing you want to cool by evaporating a liquid next to it, and then dump that heat by pumping the vapour elsewhere and condensing it. This method of pumping heat from one place to another served mankind well when rrigerators' main jobs were preserving food and, as air conditioners, cooling buildings. Today's high-tech world, however, demands high-tech rrigeration. Heat pumps are no longer up to the job. The search is on for something to replace them.
2 One set of candidates are known as paraelectric materials. These act like batteries when they undergo a temperature change: attach electrodes to them and they generate a current. This fect is used in infra-red cameras. An array of tiny pieces of paraelectric material can sense the heat radiated by, for example, a person, and the pattern of the array's electrical outputs can then be used to construct an image. But until recently no one had bothered much with the inverse of this process. That inverse exists, however. Apply an appropriate current to a paraelectric material and it will cool down.
3 Someone who is looking at this inverse fect is Alex Mischenko, of Cambridge University. Using commercially available paraelectric film, he and his colleagues have generated temperature drops five times bigger than any previously recorded. That may be enough to change the phenomenon from a laboratory curiosity to something with commercial applications.
4 As to what those applications might be, Dr Mischenko is still a little hazy. He has, nevertheless, set up a company to pursue them. He foresees putting his discovery to use in more ficient domestic fridges and air conditioners. The real money, though, may be in cooling computers.
5 Gadgets containing microprocessors have been getting hotter for a long time. One consequence of Moore's Law, which describes the doubling of the number of transistors on a chip every 18 months, is that the amount of heat produced doubles as well. In fact, it more than doubles, because besides increasing in number, the components are getting faster. Heat is released every time a logical operation is performed inside a microprocessor, so the faster the processor is, the more heat it generates. Doubling the frequency quadruples the heat output. And the frequency has doubled a lot. The first Pentium chips sold by Dr Moore's company, Intel, in 1993, ran at 60m cycles a second. The Pentium 4—the last "single-core" desktop processor—clocked up 3.2 billion cycles a second.
6 Disposing of this heat is a big obstruction to further miniaturisation and higher speeds. The innards of a desktop computer commonly hit 80℃. At 85℃, they stop working. Tweaking the processor's heat sinks (copper or aluminium boxes designed to radiate heat away) has reached its limit. So has tweaking the fans that circulate air over those heat sinks. And the idea of shifting from single-core processors to systems that divided processing power between first two, and then four, subunits, in order to spread the thermal load, also seems to have the end of the road in sight.
7 One way out of this may be a second curious physical phenomenon, the thermoelectric fect. Like paraelectric materials, this generates electricity from a heat source and produces cooling from an electrical source. Unlike paraelectrics, a significant body of researchers is already working on it.
8 The trick to a good thermoelectric material is a crystal structure in which electrons can flow freely, but the path of phonons—heat-carrying vibrations that are larger than electrons—is constantly interrupted. In practice, this trick is hard to pull off, and thermoelectric materials are thus less ficient than paraelectric ones (or, at least, than those examined by Dr Mischenko). Nevertheless, Rama Venkatasubramanian, of Nextreme Thermal Solutions in North Carolina, claims to have made thermoelectric rrigerators that can sit on the back of computer chips and cool hotspots by 10℃. Ali Shakouri, of the University of California, Santa Cruz, says his are even smaller--so small that they can go inside the chip.
9 The last word in computer cooling, though, may go to a system even less techy than a heat pump—a miniature version of a car radiator. Last year Apple launched a personal computer that is cooled by liquid that is pumped through little channels in the processor, and thence to a radiator, where it gives up its heat to the atmosphere. To improve on this, IBM's research laboratory in Zurich is experimenting with tiny jets that stir the liquid up and thus make sure all of it eventually touches the outside of the channel--the part where the heat exchange takes place. In the future, therore, a combination of microchannels and either thermoelectrics or paraelectrics might cool computers. The old, as it were, hand in hand with the new.
(830 words)
Amy GUO 经验: 16年 案例:4272 擅长:美国,澳洲,亚洲,欧洲
本网站(www.aoji.cn,刊载的所有内容,访问者可将本网站提供的内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律规定,不得侵犯本网站及相关权利人的合法权利。除此以外,将本网站任何内容或服务用于其他用途时,须征得本网站及相关权利人的书面许可,并支付报酬。
本网站内容原作者如不愿意在本网站刊登内容,请及时通知本站,予以删除。