悉尼大学商学国贸双硕士毕业,现居澳洲,在澳学习生活15+年,从事教育咨询工作超过10年,澳洲政府注册教育顾问,上千成功升学转学签证案例,定期受邀亲自走访澳洲各类学校
您所在的位置: 首页> 新闻列表> 美国数据分析这个专业有多火
欢迎访问澳际教育郑州分公司 欢迎咨询澳际教育留学顾问
根据“谷歌趋势”,在2011年的时候,“大数据”还很少被用作搜索词,但是从2012年开始到现在,你几乎能听到各行各业的人都在谈论“大数据”。
这是一个增长非常迅速的领域,而且催生出了很多的工作机会。麦肯锡公司的一份报告预计,到2018年仅美国在“具备深入分析能力”的大数据专业人才方面的缺口就在14万人到18万人之间。
据NewVantagePartners公司对《财富》美国500强公司的调查显示,85%的500强企业要么已经推出了大数据项目,要么正打算推出。未来几年他们花在数据分析上的投资将平均上涨36%。难怪《哈佛商业评论》的一篇文章里将数据分析称作“21世纪最热门的职业。”
对有志进入“大数据”职业领域的人来说,首先要搞清楚的一件事就是它的职业门槛有哪些。这个问题看似简单,实则复杂。大数据领域的发展非常迅速,而且各个公司的招聘标准也是五花八门。比如有些雇主可能要求你掌握某种特定的编程语言,但有些公司就根本没有这种要求。在这一点上,中美两国公司对大数据人才的期望体现出了一些不同的特点。
我们先来看国内的,在网上搜索“数据分析师”这个职位,百度显示的最新招聘信息约有近9000条。以其中一家“国内知名手机阅读公司”的招聘要求为例,应聘者需要满足:
⚑三年以上相关工作经历,至少有1-2个成功的中型项目经验;
⚑优秀的商业分析报告撰写能力,有及时发现和分析其中隐含问题的敏锐性;
⚑至少掌握一种数据分析工具(R/SAS/SPSS/Matlab),实现优化算法;
⚑至少熟悉一种数据库,熟练运用SQL,有丰富的数据分析、挖掘、清洗和建模经验;
⚑熟练使用JAVA/C++/Python/PHP构建中等规模的数据分析系统,有丰富的脚本处理数据经验。
再看看百度自家招聘数据分析师的职位要求:
⚑统计,数学,数据挖掘等专业;
⚑互联网行业分析领域两年以上工作经验者优先;
⚑扎实的机器学习/NLP理论和技术基础,能熟练使用SPSS/SAS/MATLAB等工具;
⚑优秀的口头和书面表达能力;
⚑具备Unix/Linux环境工作能力,能使用shell/python等脚本语言优先;
⚑优秀的分析问题和解决问题的能力,对解决具有挑战性问题充满激情;
⚑良好的逻辑思维能力,学习能力强。
综合其他一些公司的相关职位招聘要求,大体上国内公司最看重的素质归纳起来有:能熟练使用数据分析工具(掌握SPSS/SAS/MATLAB是基本技能,有些公司会增加特定要求);有2-3年的工作经验;对数字敏感、分析能力、表达能力强。这些素质对从事数据分析来说都很重要。但问题是,大数据兴起也就是近两年发生的事,人才市场上哪里能迅速培养出这么多符合期望的候选人?
美国一些公司已认识到这一点,它们采取了更现实的做法:一方面,和大学合作,长期培养大数据专业人才以及开展相关研究,比如英特尔就和数据学专业排名靠前的麻省理工学院合作建立了大数据科学技术中心;IBM则投入1亿美元在中国大学推行大数据教育,目前已和北京理工大学、复旦大学、北京大学等7所大学达成合作。
另一方面,企业界已开始转换思路,不再寄望于找到某位全能型的天才来一手搞定所有的数据分析工作,而是吸引更多各有所长的人来组成一个能创造性解决问题的团队。有些甚至不需要有统计等特定专业背景。
所以对于想进入这个行业的人来说,别灰心,即使非计算机或数学科班出身,你依然有机会。美国大数据行业龙头FICO公司的首席分析官安德鲁•詹宁思就曾向《财富》表示:“如果你不是一个纯粹搞数学的人,或者不是一个专业的编程人员,那也没关系,因为你可以和那样的人在同一支团队里工作。除了量化分析方面以外,我们还非常需要具有求知和好奇天性的人,以及能够指出业务上的问题并且能与客户沟通的人。”
最后,我们来看一下这个行业的回报怎么样。由于目前大数据人才依然处于需求大于供给的状态,在美国,一位资深数据科学家在大型社交媒体企业当中可以拿到17.5万美元的年薪,而相关自由职业者的时薪可达200美元。
除此之外,一些创业者正扎根于大数据开创属于自己的事业。“大数据创业”已成为目前非常热门的一个趋势。今年5月麻省理工学院斯隆管理学院举办的“技术创新与创业论坛”上,“技术创新与大数据创业”就是一个重要的讨论单元。在美国,《财富》刚报道过的一家公司是FlatironHealth,两位年仅28岁的创始人正试图利用大数据分析来给出治愈癌症的最佳方法。这家公司刚刚获得了谷歌1亿多美元的风险投资。
Amy GUO 经验: 16年 案例:4272 擅长:美国,澳洲,亚洲,欧洲
本网站(www.aoji.cn,刊载的所有内容,访问者可将本网站提供的内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律规定,不得侵犯本网站及相关权利人的合法权利。除此以外,将本网站任何内容或服务用于其他用途时,须征得本网站及相关权利人的书面许可,并支付报酬。
本网站内容原作者如不愿意在本网站刊登内容,请及时通知本站,予以删除。